Journal of Cluster Science

, Volume 23, Issue 2, pp 437–448 | Cite as

Photocatalytic Degradation of 2-Propanol and Phenol Using Au Loaded MnWO4 Nanorod Under Visible Light Irradiation

  • Ashok Kumar ChakrabortyEmail author
  • Sumon Ganguli
  • Mesfin Abayneh Kebede
Original Paper


Single crystalline MnWO4 nanorod has been prepared by low temperature hydrothermal reaction at 180 °C. The prepared MnWO4 possesses band gap of 2.63 eV. Photochemical decomposition method has been followed to disperse Au nanoparticles onto MnWO4 nanorod. The prepared Au loaded MnWO4 nanorod demonstrated greatly enhanced photocatalytic activity in decomposing 2-propanol and evolving CO2 in gas phase and phenol in aqueous phase compared to bare MnWO4 and commercial TiO2 nanoparticles (Degussa P25) under visible light (λ ≥ 420 nm) irradiation. The Au loading was optimized to 3.79 wt% for the highest efficiency. The enhanced photocatalytic activity originates from the absorption of visible light by MnWO4 as well as the introduction of nanoparticulate Au on the surface of MnWO4 as cocatalyst to impede the recombination of photogenerated charge-carriers.


Au-MnWO4 Photocatalyst Visible light Organic pollutants CO2 



The authors gratefully acknowledge the financial support of the Department of Applied Chemistry and Chemical Technology, Islamic University, Kushtia, Bangladesh and Evonik Degussa GmbH for Degussa P25.


  1. 1.
    Z. Zou, J. Ye, K. Sayama, and H. Arakawa (2001). Nature 414, 625.CrossRefGoogle Scholar
  2. 2.
    I. Tsuji, H. Kato, and A. Kudo (2006). Chem. Mater. 18, 1969.CrossRefGoogle Scholar
  3. 3.
    A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, and K. Domen (2004). J. Phys. Chem. B 108, 2637.CrossRefGoogle Scholar
  4. 4.
    A. K. Chakraborty and M. A. Kebede (2012). Reac. Kinet. Mech. Cat. doi: 10.1007/s11144-012-0423-7.
  5. 5.
    A. K. Chakraborty and M. A. Kebede (2011). J. Clust. Sci. doi: 10.1007/s10876-011-0425-z.
  6. 6.
    Y. X. Zhou, H. B. Yao, Q. Zhang, J. Y. Gong, S. J. Liu, and S. H. Yu (2009). Inorg. Chem. 48, 1082.CrossRefGoogle Scholar
  7. 7.
    H. Y. He, J. F. Huang, L. Y. Cao, and J. P. Wu (2010). Desalination 252, 66.CrossRefGoogle Scholar
  8. 8.
    Y. M. Gao, W. Lee, R. Trehan, R. Kershaw, K. Dwight, and A. Wold (1991). Mater. Res. Bull. 26, 1247.CrossRefGoogle Scholar
  9. 9.
    W. Lee, H. S. Shen, K. Dwight, and A. Wold (1993). J. Solid State Chem. 106, 288.CrossRefGoogle Scholar
  10. 10.
    C. M. Wang, A. Heller, and H. Gerischer (1992). J. Am. Chem. Soc. 114, 5230.CrossRefGoogle Scholar
  11. 11.
    H. Tada, A. Takao, T. Akita, and K. Tanaka (2006). Chem. Phys. Chem. 7, 1687.CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, W. T. Yao, X. Chen, L. Zhu, Y. Fu, G. Zhang, L. Sheng, and S. H. Yu (2007). Cryst. Growth Des. 7, 142.CrossRefGoogle Scholar
  13. 13.
    W. M. Qu and J. U. Meyer (1997). Sens. Acuators B 40, 175.CrossRefGoogle Scholar
  14. 14.
    Y. X. Zhou, Q. Zhang, J. Y. Gong, and S. H. Yu (2008). J. Phys. Chem. C 112, 13383.CrossRefGoogle Scholar
  15. 15.
    L. G. V. Uitert and S. Preziosi (1962). J. Appl. Phys. 33, 2908.CrossRefGoogle Scholar
  16. 16.
    D. L. Stern and R. K. Grasselli (1997). J. Catal. 167, 570.CrossRefGoogle Scholar
  17. 17.
    P. Parhi, T. N. Karthik, and V. Manivannan (2008). J. Alloys Compd. 465, 380.CrossRefGoogle Scholar
  18. 18.
    S. Lei, K. Tang, Z. Fang, Y. Huang, and H. Zheng (2005). Nanotechnology 16, 2407.CrossRefGoogle Scholar
  19. 19.
    S. J. Chen, X. T. Chen, Z. Xue, J. H. Zhou, J. Li, J. M. Hong, and X. Z. You (2003). J. Mater. Chem. 13, 1132.CrossRefGoogle Scholar
  20. 20.
    T.-D. Nguyen, C.-T. Dinh, and T.-O. Do (2011). Nanoscale 3, 1861.CrossRefGoogle Scholar
  21. 21.
    S.-H. Yu, B. Liu, M.-S. Mo, J.-H. Huang, X.-M. Liu, and Y.-T. Qian (2003). Adv. Funct. Mater. 13, 639.CrossRefGoogle Scholar
  22. 22.
    Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do (2000). J. Catal. 191, 192.CrossRefGoogle Scholar
  23. 23.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg Handbook of X-Ray Photoelectron Spectroscopy, 1st ed (Perkin-Elmer Corporation, Eden Prairie, 1979), pp. 154–155.Google Scholar
  24. 24.
    D. Li, N. Ichikuni, S. Shimazu, and T. Uematsu (1998). Appl. Catal. A 172, 351.CrossRefGoogle Scholar
  25. 25.
    L. Fan, N. Ichikuni, S. Shimazu, and T. Uematsu (2003). Appl. Catal. A General 246, 87.CrossRefGoogle Scholar
  26. 26.
    Y. Ohko, K. Hashimoto, and A. Fujishima (1997). J. Phys. Chem. A 101, 8057.CrossRefGoogle Scholar
  27. 27.
    R. Abe, H. Takami, N. Murakami, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 7780.CrossRefGoogle Scholar
  28. 28.
    Y. Xu and M. A. A. Schoonen (2000). Am. Mineral. 85, 543.Google Scholar
  29. 29.
    Y. I. Kim, S. J. Atherton, E. S. Brigham, and T. E. Mallouk (1993). J. Phys. Chem. 97, 11802.CrossRefGoogle Scholar
  30. 30.
    M. A. Butler and D. S. Ginley (1978). J. Electrochem. Soc. 125, 228.CrossRefGoogle Scholar
  31. 31.
    C. Kormann, D. Bahnemann, and M. R. Hofmann (1988). Environ. Sci. Technol. 22, 798.CrossRefGoogle Scholar
  32. 32.
    M. Mrowetz, W. Balcerski, A. J. Colussi, and M. R. Hoffmann (2004). J. Phys. Chem. B 108, 17269.CrossRefGoogle Scholar
  33. 33.
    K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto (2000). J. Phys. Chem. B 104, 4933.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ashok Kumar Chakraborty
    • 1
    Email author
  • Sumon Ganguli
    • 2
  • Mesfin Abayneh Kebede
    • 3
  1. 1.Department of Applied Chemistry and Chemical TechnologyIslamic UniversityKushtiaBangladesh
  2. 2.Department of Nutrition and Food EngineeringDaffodil International UniversityDhanmondi, DhakaBangladesh
  3. 3.Materials Science and Manufacturing, Council for Scientific and Industrial ResearchPretoriaSouth Africa

Personalised recommendations