Advertisement

Journal of Cluster Science

, Volume 22, Issue 4, pp 673–692 | Cite as

EPR Study of Electronic Structure of [CoF6]3−and B18N18 Nano Ring Field Effects on Octahedral Complex

  • M. MonajjemiEmail author
  • M. Khaleghian
Original Paper

Abstract

Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for B18N18-[CoF6]3− complex have been carried out to study the non-bonded interaction. The geometry of the B18N18 has been optimized at B3LYP method with EPR-II basis set and geometry of the [CoF6]3− have been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electromagnetic interactions of the [CoF6]3− molecule embedded in the B18N18 Nano ring have been investigated at B3LYP and total atomic charges, spin densities, dipole moment and isotropic Fermi coupling constants parameters in different loops and bonds of the B18N18-[CoF6]3− system have been calculated. Also NBO analysis such as electronic delocalization between donor and acceptor bonds has been studied by DFT method. Then we have been investigated the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for the lowest energy have been derived to estimate the structural stability of the B18N18-[CoF6]3− system, and the coefficients of s, p and d orbitals of Co-F bonds involved in B18N18-[CoF6]3−.Thus, hybridization of Co and F atoms can be distinguished based on these NBO data. The Gaussian quantum chemistry package is used for all calculations.

Keywords

DFT Dipole moment ECP EPR-II basis set HOMO LUMO NICS LCAO Hyperfine properties 

Abbreviations

DFT

Density functional theory

EPR

Electron paramagnetic resonance

HOMOL

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

ECP

Effective core potential

NICS

Nuclear independent chemical shift

LCAO

Linear combination of atomic orbitals

References

  1. 1.
    P. W. Fowler, K. M. Rogers, G. Seifert, M. Terrones, and H. Terrones (1999). Chem. Phys. Lett. 299, 359.CrossRefGoogle Scholar
  2. 2.
    Y. Liu, Z. Wenli, B. B. Isaac, and J. E. Boggs (2009). J. Chem. Phys. 30, 184305.CrossRefGoogle Scholar
  3. 3.
    A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, and G. Hug (1998). Carbon 36, 743–752.CrossRefGoogle Scholar
  4. 4.
    M. L. Sun, Z. Slanina, and S. L. Lee (1995). Chem. Phys. Lett. 233, 279.CrossRefGoogle Scholar
  5. 5.
    M. Monajjemi, H. Aghaie, and F. Naderi (2007). Biochemistry (Moscow) 72, 799.CrossRefGoogle Scholar
  6. 6.
    O. Takeo, K. Masaki, K. Hidehiko, and N. Ichihito (2001). Int. J. Inorg. Mater. 3, 597.CrossRefGoogle Scholar
  7. 7.
    S. H. Xu, M. Y. Zhang, Y. Y. Zhao, B. G. Cheng, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 418, 297.CrossRefGoogle Scholar
  8. 8.
    D. L. Strout (2000). J. Phys. Chem. A 104, 3364.CrossRefGoogle Scholar
  9. 9.
    D. L. Strout (2001). J. Phys. Chem. A 105, 261.CrossRefGoogle Scholar
  10. 10.
    D. L. Strout (2004). Chem. Phys. Lett. 383, 95.CrossRefGoogle Scholar
  11. 11.
    S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham (1999). Appl. Phys. Lett. 75, 61.CrossRefGoogle Scholar
  12. 12.
    S. S. Alexandre, R. W. Nunes, and H. Chacham (2002). Phys. Rev. B 66, 085.CrossRefGoogle Scholar
  13. 13.
    H. S. Wu and H. J. Jiao (2004). Chem. Phys. Lett. 386, 369.CrossRefGoogle Scholar
  14. 14.
    H. S. Wu, X. H. Xu, D. L. Strout, and H. J. Jiao (2005). J. Mol. Model. 12, 1.CrossRefGoogle Scholar
  15. 15.
    K. W. Rogers, P. W. Fowler, and G. Seifert (2000). Chem. Phys. Lett. 332, 43.CrossRefGoogle Scholar
  16. 16.
    M. Monajjemi, L. Mahdavian, and F. Mollaamin (2008). Bull. Chem. Soc. Ethio. 22, 1.Google Scholar
  17. 17.
    F. Mollaamin, S. Gharibe, and M. Monajjemi (2011). Int. J. Phys. Sci. 6, 1496.Google Scholar
  18. 18.
    M. Monajjemi, H. Chegini, F. Mollaamin, and P. Farahani (2011). Fullerenes, Nanotub Carbon Nanostructure 19, 469.CrossRefGoogle Scholar
  19. 19.
    F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili Hadad, and M. Monajjemi (2011). Fullerenes, Nanotub Carbon Nanostructures 19, 653.CrossRefGoogle Scholar
  20. 20.
    L. B. Knight Jr, D. W. Hill, T. J. Kirk, and C. A. Arrington (1992). J. Phys. Chem. 96, 555.CrossRefGoogle Scholar
  21. 21.
    Z. Slanina, J. M. L. Martin, J. P. Franqois, and R. Gijbels (1993). Chem. Phys. Lett. 201, 54.CrossRefGoogle Scholar
  22. 22.
    Z. Slanina, J. M. L. Martin, J. P. Franqoisand, and R. Gijbels (1993). Chem. Phys. 178, 77.CrossRefGoogle Scholar
  23. 23.
    M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian (2009). Rus. J. Inorg. Chem. 54, 1465–1473.CrossRefGoogle Scholar
  24. 24.
    S. Iijima and T. Ichihashi (1993). Nature 363, 603.CrossRefGoogle Scholar
  25. 25.
    P. M. Ajayan (1999). Chem. Rev. 99, 1787.CrossRefGoogle Scholar
  26. 26.
    R. F. Curl and R. E. Smalley (1988). Science 242, 1017.CrossRefGoogle Scholar
  27. 27.
    H. Y. Zhu, D. J. Klein, W. A. Seitz, and N. H. March (1995). Inorg. Chem. 34, 1377.CrossRefGoogle Scholar
  28. 28.
    S. M. Glauciete and G. Edgardo (2005). Chem. Phys. Lett. 409, 29.CrossRefGoogle Scholar
  29. 29.
    D. K. Hoffman, R. Ruedenberg, and J. G. Verkade (1977). Struct. Bond. 33, 57.CrossRefGoogle Scholar
  30. 30.
    M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin (2010). J. Phys. Chem. C 114, 15315.CrossRefGoogle Scholar
  31. 31.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  32. 32.
    C. Lee, W. Yang, and R. G. Parr (1998). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  33. 33.
    D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441.CrossRefGoogle Scholar
  34. 34.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Raghavachari, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople (1998) Gaussian 98 Revision A.7, Gaussian, Inc., Pittsburgh.Google Scholar
  35. 35.
    K. Oku, A. Nishiwaki, I. Narita, and M. Gonda (2003). Chem. Phys. Lett. 380, 620.CrossRefGoogle Scholar
  36. 36.
    E. C. Behrman, R. K. Foehrweiser, J. R. Myers, B. R. French, and M. E. Zandler (1994). Phys. Rev. A 49, R1543.CrossRefGoogle Scholar
  37. 37.
    R. B. Zhang, T. Z. Huyskensd, A. Ceulemeans, and M. T. Nguyen (2005). Chem. Phys. 316, 35.CrossRefGoogle Scholar
  38. 38.
    J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.CrossRefGoogle Scholar
  39. 39.
    M. Monajjemi, M. T. Azad, H. H. Haeri, K. Zare, and Sh. Hamedani (2003). J. Chem. Res. 1, (8), 454.CrossRefGoogle Scholar
  40. 40.
    L. Goodman, V. Pophristic, and F. Weinhold (1999). Acc. Chem. Res. 32, 983.CrossRefGoogle Scholar
  41. 41.
    A. E. Reed and F. Weinhold (1985). J. Am. Chem. Soc. 107, 1919.CrossRefGoogle Scholar
  42. 42.
    W. K. Myers, C. P. Scholes, and D. L. Tierney (2009). J. Am. Chem. Soc. 9, 131.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryScience and Research Branch, Islamic Azad UniversityTehranIran
  2. 2.Science and Research Branch, Islamic Azad UniversityTehranIran

Personalised recommendations