Journal of Cluster Science

, 22:525 | Cite as

Hydrogenation of B120/−: A Planar-to-Icosahedral Structural Transition in B12Hn0/− (n = 1–6) Boron Hydride Clusters

Original Paper

Abstract

A systematic density functional theory and wave function theory investigation performed in this work reveals a planar-to-icosahedral structural transition between n = 4–5 in the partially hydrogenated B12Hn0/− clusters (n = 1–6) upon hydrogenation of all-boron B120/−. Coupled cluster calculations with triple excitations (CCSD(T)) indicate that a distorted icosahedral B12H6 cluster with C2 symmetry is overwhelmingly favored (by 35 kcal/mol) over the recently proposed perfectly planar borozene (D3h B12H6) (Szwacki et al., Nanoscale Res Lett 4:1085, 2009) which proves to be a high-lying local minimum. A similar 2D–3D structural transition occurs to the corresponding boron boronyl analogues of B12(BO)n with n –BO terminals. Detailed adaptive natural density partitioning (AdNDP) analyses reveal the bonding patterns of these quasi-planar or cage-like clusters which are characterized with delocalized σ and π molecular orbitals. The electron detachment energies of the concerned anions and excitation energies of the neutrals are also predicted to facilitate their future experimental characterizations.

Keywords

Boron Boron hydrides Density functional theory Structures Adaptive natural density partitioning 

References

  1. 1.
    F. A. Cotton, G. Wilkinson, C. A. Murrillo, and M. Bochmann Advanced Inorganic Chemistry, 6th ed (John Wiley & Sons, New York, 1999).Google Scholar
  2. 2.
    A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811.CrossRefGoogle Scholar
  3. 3.
    M. Y. Zubarev and A. I. Boldyrev (2007). J. Comput. Chem. 28, 251.CrossRefGoogle Scholar
  4. 4.
    H.-J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.CrossRefGoogle Scholar
  5. 5.
    B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl Acad. Sci. USA 102, 961.CrossRefGoogle Scholar
  6. 6.
    A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 7244.CrossRefGoogle Scholar
  7. 7.
    W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.CrossRefGoogle Scholar
  8. 8.
    A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). J. Chem. Phys. 134, 224304.CrossRefGoogle Scholar
  9. 9.
    N. G. Szwacki, V. Weber, and C. J. Tymczak (2009). Nanoscale Res. Lett. 4, 1085.CrossRefGoogle Scholar
  10. 10.
    G. Forte, A. La Magna, I. Deretzis, and R. Pucci (2010). Nanoscale Res. Lett. 5, 158.CrossRefGoogle Scholar
  11. 11.
    S. Sahu and A. Shukla (2010). Nanoscale Res. Lett. 5, 714.CrossRefGoogle Scholar
  12. 12.
    N. G. Szwacki (2008). Nanoscale Res. Lett. 3, 49.CrossRefGoogle Scholar
  13. 13.
    A. N. Alexandrova, E. Koyle, and A. I. Boldyrev (2006). J. Mol. Model. 12, 569.CrossRefGoogle Scholar
  14. 14.
    M. Boyukata, C. Ozdogan, and Z. B. Guvenc (2007). J. Mol. Struct. (THEOCHEM) 805, 91.CrossRefGoogle Scholar
  15. 15.
    A. N. Alexandrova, K. A. Birch, and A. I. Boldyrev (2003). J. Am. Chem. Soc. 125, 10786.CrossRefGoogle Scholar
  16. 16.
    Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, and T. Kanayama (2008). J. Chem. Phys. 128, 124304.CrossRefGoogle Scholar
  17. 17.
    D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.CrossRefGoogle Scholar
  18. 18.
    D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem. 73, 9251.CrossRefGoogle Scholar
  19. 19.
    D. Y. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.CrossRefGoogle Scholar
  20. 20.
    Q. Chen and S. D. Li (2011). J. Clust. Sci. doi:10.1007/s10876–011-0400–8.
  21. 21.
    Q. Chen, H. Bai, J. C. Guo, C. Q. Miao, and S. D. Li (2011). Phys. Chem. Chem. Phys., submitted.Google Scholar
  22. 22.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  23. 23.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  24. 24.
    M. Head-Gordon, J. A. Pople, and M. Frisch (1988). Chem. Phys. Lett. 153, 503.CrossRefGoogle Scholar
  25. 25.
    M. Head-Gordon and T. Head-Gordon (1994). Chem. Phys. Lett. 220, 122.CrossRefGoogle Scholar
  26. 26.
    J. A. Pople, M. Head-Gordon, and K. Raghavachari (1987). J. Chem. Phys. 87, 5968.CrossRefGoogle Scholar
  27. 27.
    G. E. Scuseria and H. F. Schaefer III (1989). J. Chem. Phys. 90, 3700.CrossRefGoogle Scholar
  28. 28.
    G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III (1988). J. Chem. Phys. 89, 7382.CrossRefGoogle Scholar
  29. 29.
    J. Cizek (1969). Adv. Chem. Phys. 14, 35.CrossRefGoogle Scholar
  30. 30.
    G. Schaftenaar, MOLDEN, version 4.1 (Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen, 2003).Google Scholar
  31. 31.
    P. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes (1996). J. Am. Chem. Soc. 118, 6317.CrossRefGoogle Scholar
  32. 32.
    H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. R. Schleyer (2006). Org. Lett. 8, 863.CrossRefGoogle Scholar
  33. 33.
    K. Wolinski, J. F. Hilton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.CrossRefGoogle Scholar
  34. 34.
    M. J. Frisch, et al. Gaussian 03, Revision, A. 1 (Gaussian, Inc., Pittsburgh, PA, 2003).Google Scholar
  35. 35.
    H. J. Zhai, M. Wang, S. D. Li, and L. S. Wang (2007). J. Phys. Chem. A 111, 1030.CrossRefGoogle Scholar
  36. 36.
    H. J. Zhai, S. D. Li, and L. S. Wang (2007). J. Am. Chem. Soc. 129, 9254.CrossRefGoogle Scholar
  37. 37.
    S. D. Li, H. J. Zhai, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 2573.CrossRefGoogle Scholar
  38. 38.
    H. Tang and S. Ismail-Beigi (2007). Phys. Rev. Lett. 99, 115501.CrossRefGoogle Scholar
  39. 39.
    H. Tang and S. Ismail-Beigi (2009). Phys. Rev. B. 80, 134113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Molecular SciencesShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.Department of Chemistry, Institute of Materials ScienceXinzhou Teachers’ UniversityXinzhouPeople’s Republic of China

Personalised recommendations