Journal of Cluster Science

, 22:513 | Cite as

π-Aromatic B16H6: A Neutral Boron Hydride Analogue of Naphthalene

Original Paper

Abstract

Systematic ab inito calculations are carried out in this work to investigate the geometrical and electronic structures of B16H6 neutral and its anion B16H6. The quasi-planar C2v B16H6(1A1) with 10 delocalized π-electrons proves to be the neutral boron hydride analogue of naphthalene (D2h C10H8). This π-aromatic neutral may be obtained from the experimentally known π-antiaromatic C2h B16 (Sergeeva et al., J. Am. Chem. Soc. 130:7244, 2008) upon hydrogenation at the six corner positions and is expected to be undistinguishable from a perfect planar D2h B16H6 in experiments. Detailed adaptive natural density partitioning (AdNDP) analyses clearly reveal the bonding pattern of B16H6 and the calculated nucleus independent chemical shifts (NICS) strongly support its global π-aromaticity. C2v B16H6(2B2) anion with one extra electron appears to have a similar quasi-planar structure with even a less severe out-of-plane distortion. Ultraviolet (UV) absorption spectrum of B16H6 and photoelectron spectroscopy (PES) spectrum of B16H6 are simulated to facilitate their spectroscopic characterizations.

Keywords

Boron Boron hydrides Aromaticity AdNDP NICS Ab inito calculation 

Notes

Acknowledgments

This work was jointly supported by the National Science Foundation of China (No. 20873117) and Shanxi Natural Science Foundation (No. 2010011012-3). The authors are grateful to Professor A. I. Boldyrev who gave us the AdNDP and CK programs and Timur Galeev and Alina Sergeeva at Utah State University for their kind help in using the AdNDP program.

Supplementary material

10876_2011_400_MOESM1_ESM.doc (6.6 mb)
Supplementary material 1 (DOC 6807 kb)

References

  1. 1.
    A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811; and references therein.Google Scholar
  2. 2.
    H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.CrossRefGoogle Scholar
  3. 3.
    A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 7244.CrossRefGoogle Scholar
  4. 4.
    W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.CrossRefGoogle Scholar
  5. 5.
    J. Aihara, H. Kanno, and T. Ishida (2005). J. Am. Chem. Soc. 127, 13324.CrossRefGoogle Scholar
  6. 6.
    D. Y. Zubarev and A. I. Boldyrev (2008). Phys Chem. Chem. Phys. 10, 5207.CrossRefGoogle Scholar
  7. 7.
    D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem. 73, 9251.CrossRefGoogle Scholar
  8. 8.
    D. Y. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.CrossRefGoogle Scholar
  9. 9.
    D. Y. Zubarev and A. I. Boldyrev (2007). J. Comput. Chem. 28, 251.CrossRefGoogle Scholar
  10. 10.
    T. B. Tai, D. J. Grant, M. T. Nguyen, and D. A. Dixon (2010). J. Phys. Chem. A 114, 994.CrossRefGoogle Scholar
  11. 11.
    P. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes (1996). J. Am. Chem. Soc. 118, 6317.CrossRefGoogle Scholar
  12. 12.
    H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. R. Schleyer (2006). Org. Lett. 8, 863.CrossRefGoogle Scholar
  13. 13.
    A. N. Alexandrova, E. Koyle, and A. I. Boldyrev (2006). J. Mol. Model. 12, 569.CrossRefGoogle Scholar
  14. 14.
    N. G. Szwacki, V. Weber, and C. J. Tymczak (2009). Nanoscale Res. Lett. 4, 1085.CrossRefGoogle Scholar
  15. 15.
    H. Bai and S. D. Li (2011). Nanoscale Res. Lett., submitted.Google Scholar
  16. 16.
    H. J. Zhai, L. S. Wang, D. Yu. Zubarev, and A. I. Boldyrev (2006). J. Phys. Chem. A 110, 1689.CrossRefGoogle Scholar
  17. 17.
    A. N. Alexandrova, K. A. Birch, and A. I. Boldyrev (2003). J. Am. Chem. Soc. 125, 10786.CrossRefGoogle Scholar
  18. 18.
    Y. J. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, and T. Kanayama (2008). J. Chem. Phys. 128, 1243054.CrossRefGoogle Scholar
  19. 19.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  20. 20.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785.CrossRefGoogle Scholar
  21. 21.
    X. Xu and W. A. Goddard (2004). Proc. Natl Acad. Sci. USA 101, 2673.CrossRefGoogle Scholar
  22. 22.
    M. J. Frisch, et al. Gaussian 03, Revision, A. 1 (Gaussian, Inc., Pittsburgh, PA, 2003).Google Scholar
  23. 23.
    M. Head-Gordon, J. A. Pople, and M. Frisch (1988). Chem. Phys. Lett. 153, 503.CrossRefGoogle Scholar
  24. 24.
    M. Head-Gordon and T. Head-Gordon (1994). Chem. Phys. Lett. 220, 122.CrossRefGoogle Scholar
  25. 25.
    J. A. Pople, M. Head-Gordon, and K. Raghavachari (1987). J. Chem. Phys. 87, 5968.CrossRefGoogle Scholar
  26. 26.
    G. E. Scuseria and H. F. Schaefer III (1989). J. Chem. Phys. 90, 3700.CrossRefGoogle Scholar
  27. 27.
    G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III (1988). J. Chem. Phys. 89, 7382.CrossRefGoogle Scholar
  28. 28.
    J. Cizek (1969). Adv. Chem. Phys. 14, 35.CrossRefGoogle Scholar
  29. 29.
    A. P. Sergeeva, B. B. Averkiev, H.-J. Zhai, A. I. Boldyrev, and L.-S. Wang (2011). J. Chem. Phys. 134, 224304.CrossRefGoogle Scholar
  30. 30.
    K. Wolinski, J. F. Hinton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.CrossRefGoogle Scholar
  31. 31.
    T. A. Keith and R. F. W. Bader (1992). Chem. Phys. Lett. 194, 1.CrossRefGoogle Scholar
  32. 32.
    T. A. Keith and R. F. W. Bader (1993). Chem. Phys. Lett. 210, 223.CrossRefGoogle Scholar
  33. 33.
    J. R. Cheeseman, M. J. Frisch, G. W. Trucks, and T. A. Keith (1996). J. Chem. Phys. 104, 5497.CrossRefGoogle Scholar
  34. 34.
    P. Lazzeretti (2004). Phys Chem. Chem. Phys. 6, 217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Molecular ScienceShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.Institute of Materials ScienceXinzhou Teachers’ UniversityXinzhouPeople’s Republic of China

Personalised recommendations