Journal of Cluster Science

, 22:405 | Cite as

Influence of Surfactants and Charges on CdSe Quantum Dots

  • Ping Yang
  • Sergei Tretiak
  • Sergei Ivanov
Original Paper


Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd–O > Cd–N > Cd–P with average binding energy per ligand being −25 kcal/mol for OPH2Me, −20 kcal/mol for NH3 and −10 kcal/mol for PMe3. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties.


CdSe quantum dots Surface ligands Charges Density functional theory 



PY acknowledges support from Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research) located at Pacific North-west National Laboratory and operated for the DOE by Battelle. ST acknowledges support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE). We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.


  1. 1.
    C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.CrossRefGoogle Scholar
  2. 2.
    X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos (2000). Nature 404(6773), 59.CrossRefGoogle Scholar
  3. 3.
    L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos (2003). Nat. Mater. 2, 382.CrossRefGoogle Scholar
  4. 4.
    P. V. Kamat (2008). J. Phys. Chem. C. 112, 18737.Google Scholar
  5. 5.
    P. V. Kamat (2007). J. Phys. Chem. C. 111, 2834.CrossRefGoogle Scholar
  6. 6.
    J. Y. Lek, L. F. Xi, B. E. Kardynal, L. H. Wong, and Y. M. Lam (2011). ACS Appl. Mater. Interfaces 3, 287.CrossRefGoogle Scholar
  7. 7.
    I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak (2010). J. Phys. Chem. C. 114, 12784.CrossRefGoogle Scholar
  8. 8.
    M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998). Science 281, 2013.CrossRefGoogle Scholar
  9. 9.
    D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos (2001). J. Phys. Chem. B 105, (37), 8861.CrossRefGoogle Scholar
  10. 10.
    N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin (2002). Science 295, 1506.CrossRefGoogle Scholar
  11. 11.
    J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi (2008). Photonics 2, 247.CrossRefGoogle Scholar
  12. 12.
    L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent (2003). Appl. Phys. Lett. 82, 2895.CrossRefGoogle Scholar
  13. 13.
    D. A. Tryk, A. Fujishima, and K. Honda (2000). Electrochim. Acta 45, 2363.CrossRefGoogle Scholar
  14. 14.
    W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos (2003). Nanotechnology 14, (7), R15.CrossRefGoogle Scholar
  15. 15.
    X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss (2001). Single Mol. 2, (4), 261.CrossRefGoogle Scholar
  16. 16.
    X. Michalet, F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss (2005). Science 307, 538.CrossRefGoogle Scholar
  17. 17.
    I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi (2005). Nat. Mater. 4, 435.CrossRefGoogle Scholar
  18. 18.
    R. Gill, M. Zayats, and I. Willner (2008). Angew. Chem. Int. Ed. 47, 7602.CrossRefGoogle Scholar
  19. 19.
    A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and T. F. Kuech (1997). J. Chem. Educ. 74, 680.CrossRefGoogle Scholar
  20. 20.
    M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus (1996). Nature 383, (6603), 802.CrossRefGoogle Scholar
  21. 21.
    L. Manna, E. Scher, and A. P. Alivisatos (2000). J. Am. Chem. Soc. 122, 12700.CrossRefGoogle Scholar
  22. 22.
    W. Wang, S. Banerjee, S. G. Jia, M. L. Steigerwald, and I. P. Herman (2007). Chem. Mater. 19, 2573.CrossRefGoogle Scholar
  23. 23.
    Z. A. Peng and X. G. Peng (2001). J. Am. Chem. Soc. 123, (1), 183.CrossRefGoogle Scholar
  24. 24.
    D. Wu, M. E. Kordesch, and P. G. V. Patten (2005). Chem. Mater. 17, 6436.CrossRefGoogle Scholar
  25. 25.
    V. Dzhagan, I. Lokteva, C. Himcinschi, X. Jin, J. Kolny-Olesiak, and D. R. Zahn (2011). Nanoscale Res. Lett. 6, 79.CrossRefGoogle Scholar
  26. 26.
    M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pagnier, and J. R. Morante (2008). Langmuir 24, (19), 11182.CrossRefGoogle Scholar
  27. 27.
    X. Chen, A. C. S. Samia, Y. Lou, and C. Burda (2005). J. Am. Chem. Soc. 127, 4372.CrossRefGoogle Scholar
  28. 28.
    B. Mahler, N. Lequeux, and B. Dubertret (2009). J. Am. Chem. Soc. 132, 953.CrossRefGoogle Scholar
  29. 29.
    A. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss (2010). J. Phys. Chem. Lett. 1, 1078.CrossRefGoogle Scholar
  30. 30.
    M. Mulvihill, S. Habas, I. Jen-La Plante, J. Wan, and T. Mokari (2010). Chem. Mater. 22, 5251.CrossRefGoogle Scholar
  31. 31.
    D. A. Navarro, S. Banerjee, D. S. Aga, and D. F. Watson (2010). J. Colloid Interface Sci. 348, 119.CrossRefGoogle Scholar
  32. 32.
    M. D. Regulacio and M. Y. Han (2010). Acc. Chem. Res. 43, 621.CrossRefGoogle Scholar
  33. 33.
    P. Zrazhevskiy, M. Sena, and X. Gao (2010). Chem. Soc. Rev. 39, 4326.CrossRefGoogle Scholar
  34. 34.
    S. Rosenthal, J. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson (2011). Chem. Biol. 18, 10.CrossRefGoogle Scholar
  35. 35.
    K. Susumu, B. C. Mei, and H. Mattoussi (2009). Nat. Protoc. 4, 424.CrossRefGoogle Scholar
  36. 36.
    L. R. Becerra, C. B. Murray, G. G. Griffin, and M. G. Bavendi (1994). J. Chem. Phys. 100, 3297.CrossRefGoogle Scholar
  37. 37.
    J. E. B. Katari, V. L. Colven, and A. P. Alivistos (1994). J. Phys. Chem. 98, 4109.CrossRefGoogle Scholar
  38. 38.
    S. Sharma, Z. S. Pillai, and P. V. Kamat (2003). J. Phys. Chem. B 107, 10088.CrossRefGoogle Scholar
  39. 39.
    A. Haesselbarth, A. Eychmueller, and H. Weller (1993). Chem. Phys. Lett. 203, 271.CrossRefGoogle Scholar
  40. 40.
    N. A. Hill and K. B. Whaley (1994). J. Chem. Phys. 100, (4), 2831.CrossRefGoogle Scholar
  41. 41.
    V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi (2000). Phys. Rev. B 61, R13349.CrossRefGoogle Scholar
  42. 42.
    R. G. Xie, U. Kolb, J. X. Li, T. Bashe, and A. Mews (2005). J. Am. Chem. Soc. 127, 7480.CrossRefGoogle Scholar
  43. 43.
    S. J. Clarke, C. A. Hollmann, F. A. Aldaye, and J. L. Nadeau (2008). Bioconj. Chem. 19, 562.CrossRefGoogle Scholar
  44. 44.
    M. A. Schreuder, J. R. McBride, A. D. Dukes III, J. A. Sammons, and S. J. Rosenthal (2009). J. Phys. Chem. C 113, 8169.CrossRefGoogle Scholar
  45. 45.
    A. Henglein (1993). J. Phys. Chem. 97, 5457.CrossRefGoogle Scholar
  46. 46.
    C. F. Landes, M. Braun, and M. A. El-Sayed (2001). J. Phys. Chem. B 105, 10554.CrossRefGoogle Scholar
  47. 47.
    B. P. Aryal and D. E. Benson (2006). J. Am. Chem. Soc. 128, 15986.CrossRefGoogle Scholar
  48. 48.
    J. G. Liang, S. S. Zhang, X. P. Ai, X. H. Ji, and Z. K. He (2005). Spectrochim Acta A 61, 2974.CrossRefGoogle Scholar
  49. 49.
    D. R. Baker and P. V. Kamat (2010). Langmuir 26, (13), 11272.CrossRefGoogle Scholar
  50. 50.
    M. A. Caldwell, A. E. Albers, S. C. Levy, T. E. Pick, B. E. Cohen, B. A. Helms, and D. J. Milliron (2011). Chem. Commun. 47, 556.CrossRefGoogle Scholar
  51. 51.
    Claridge, S., Castleman Jr, A., Khanna, S., Murray, C.B., Sen, A., Weiss, P.S.: Cluster-assembled materials. Acs Nano (2009).Google Scholar
  52. 52.
    P. D. Cozzoli, T. Pellegrino, and L. Manna (2006). Chem. Soc. Rev. 35, 1195.CrossRefGoogle Scholar
  53. 53.
    A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, and V. I. Klimov (2004). J. Phys. Chem. B 108, 5250.CrossRefGoogle Scholar
  54. 54.
    V. M. Huxter and G. Scholes (2009). J. Nanophoton. 3, (1), 032504. doi: 10.1117/1.3276902.CrossRefGoogle Scholar
  55. 55.
    A. M. Smith and S. Nie (2009). Acc. Chem. Res. 43, 190.CrossRefGoogle Scholar
  56. 56.
    D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko (2009). Chem. Rev. 110, 389.CrossRefGoogle Scholar
  57. 57.
    Y. Yin and A. P. Alivisatos (2004). Nature 437, 664.CrossRefGoogle Scholar
  58. 58.
    A. Wolcott, R. Fitzmorris, O. Muzaffery, and J. Z. Zhang (2010). Chem. Mater. 22, 2814.CrossRefGoogle Scholar
  59. 59.
    F. Wang, R. Tang, J. Kao, S. D. Dingman, and W. E. Buhro (2009). J. Am. Chem. Soc. 131, 4983.CrossRefGoogle Scholar
  60. 60.
    A. Cros-Gagneux, F. Delpech, C. Nayral, A. Cornejo, Y. Coppel, and B. Chaudret (2010). J. Am. Chem. Soc. 132, 18147.CrossRefGoogle Scholar
  61. 61.
    M. D. Donakowski, J. M. Godbe, R. Sknepnek, K. E. Knowles, M. O. de la Cruz, and E. A. Weiss (2010). J. Phys. Chem. C 114, 22526.CrossRefGoogle Scholar
  62. 62.
    A. M. Munro, I. Jen-La Plante, M. S. Ng, and D. S. Ginger (2007). J. Phys. Chem. C 111, 6220.CrossRefGoogle Scholar
  63. 63.
    I. Moreels, J. C. Martins, and Z. Hens (2006). ChemPhysChem 7, 1028.CrossRefGoogle Scholar
  64. 64.
    X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng (2008). J. Am. Chem. Soc. 130, 5726.CrossRefGoogle Scholar
  65. 65.
    C. Bullen and P. Mulvaney (2006). Langmuir 22, 3007.CrossRefGoogle Scholar
  66. 66.
    B. Fritzinger, R. Capek, K. Lambert, J. C. Martins, and Z. Hens (2010). J. Am. Chem. Soc. 132, 10195.CrossRefGoogle Scholar
  67. 67.
    R. Gomes, A. Hassinen, A. Szczygiel, Q. Zhao, A. Vantomme, J. C. Martins, and Z. Hens (2011). J. Phys. Chem. Lett. 2, 145.CrossRefGoogle Scholar
  68. 68.
    Z. J. Jiang and D. F. Kelley (2010). ACS Nano 4, 1561.CrossRefGoogle Scholar
  69. 69.
    A. Dukes III, J. R. McBride, and S. J. Rosenthal (2010). Chem. Mater. 22, 6402.CrossRefGoogle Scholar
  70. 70.
    F. S. Riehle, R. Bienert, R. Thomann, G. A. Urban, and M. Kruger (2009). Nano Lett 9, 514.CrossRefGoogle Scholar
  71. 71.
    J. Huang, M. V. Kovalenko, and D. V. Talapin (2010). J. Am. Chem. Soc. 132, 15866.CrossRefGoogle Scholar
  72. 72.
    W. W. Yu, Y. A. Wang, and X. G. Peng (2003). Chem. Mater. 15, (22), 4300.CrossRefGoogle Scholar
  73. 73.
    J. T. Hu, L. W. Wang, L. S. Li, W. D. Yang, and A. P. Alivisatos (2002). J. Phys. Chem. B 106, (10), 2447.CrossRefGoogle Scholar
  74. 74.
    L. Manna, L. W. Wang, R. Cingolani, and A. P. Alivisatos (2005). J. Phys. Chem. B 109, (13), 6183.CrossRefGoogle Scholar
  75. 75.
    L. W. Wang, M. Califano, A. Zunger, and A. Franceschetti (2003). Phys. Rev. Lett. 91, (5), 056404.CrossRefGoogle Scholar
  76. 76.
    L. W. Wang and A. Zunger (1995). Phys. Rev. B 51, (24), 17398.CrossRefGoogle Scholar
  77. 77.
    L. W. Wang and A. Zunger (1996). Phys. Rev. B 53, (15), 9579.CrossRefGoogle Scholar
  78. 78.
    L. Pizzagalli, G. Galli, J. E. Klepeis, and F. Gygi (2001). Phys. Rev. B 63, 16.CrossRefGoogle Scholar
  79. 79.
    A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, G. Manna, and A. P. Alivisatos (2004). Nano Lett. 4, (12), 2361.CrossRefGoogle Scholar
  80. 80.
    A. Puzder, A. J. Wlliamson, F. Gygi, and G. Galli (2004). Phys. Rev. Lett. 92, 217401.CrossRefGoogle Scholar
  81. 81.
    A. Puzder, A. J. Williamson, F. Gygi, and G. Galli (2003). Phys. Rev. Lett. 91, 037401.CrossRefGoogle Scholar
  82. 82.
    K. Leung and K. B. Whaley (1999). J. Chem. Phys. 110, (22), 11012.CrossRefGoogle Scholar
  83. 83.
    H. Haug and S. W. Kock Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).Google Scholar
  84. 84.
    A. Zunger (2001). Phys. Stat. Sol. (b) 224, 727.CrossRefGoogle Scholar
  85. 85.
    V. S. Gurin (1994). J. Phys. 6, (42), 8691.Google Scholar
  86. 86.
    J. Robles, O. Mayorga, T. Lee, and D. Diaz (1999). Nanostruct. Mater. 11, 283.CrossRefGoogle Scholar
  87. 87.
    K. Toth and T. A. Pakkanen (1993). J. Comput. Chem. 14, 667.CrossRefGoogle Scholar
  88. 88.
    P. Deglmann, R. Ahlrichs, and K. Tsereteli (2002). J. Chem. Phys. 116, (4), 1585.CrossRefGoogle Scholar
  89. 89.
    J. Frenzel, J. O. Joswig, P. Sarkar, G. Seifert, and M. Springborg (2005). Eur. J. Inorg. Chem. 36, 3585.CrossRefGoogle Scholar
  90. 90.
    D. Porezag, T. Frauenheim, T. Kohler, G. Seifert, and R. Kaschner (1995). Phys. Rev. B 51, 12947.CrossRefGoogle Scholar
  91. 91.
    T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai (2002). J. Phys. 14, 3015.Google Scholar
  92. 92.
    J. M. Matxain, J. E. Flowler, and J. M. Ugalde (2000). Phys. Rev. A 61, 053201.CrossRefGoogle Scholar
  93. 93.
    M. C. Troparevsky and J. R. Chelikowsky (2001). J. Chem. Phys. 114, (2), 943.CrossRefGoogle Scholar
  94. 94.
    J. O. Joswig, M. Springborg, and G. Seifert (2000). J. Phys. Chem. B 104, 2617.CrossRefGoogle Scholar
  95. 95.
    T. Rabini, B. Hetényi, and B. Berne (1999). J. Chem. Phys. 110, 5355.CrossRefGoogle Scholar
  96. 96.
    J. R. Sachleben, V. Colvin, L. Emsley, E. W. Wooten, and A. P. Alivisatos (1998). J. Phys. Chem. B 102, (50), 10117.CrossRefGoogle Scholar
  97. 97.
    D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder, and J. M. J. Frechet (2003). Adv. Mater. 15, (1), 58.CrossRefGoogle Scholar
  98. 98.
    S. Pokrant and K. B. Whaley (1999). Eur. Phys. J. D 6, (2), 255.CrossRefGoogle Scholar
  99. 99.
    G. W. Bryant and W. Jaskolski (2005). J. Phys. Chem. B 109, 19650.CrossRefGoogle Scholar
  100. 100.
    M. Korkusinski, O. Voznyy, and P. Hawrylak (2010). Phys. Rev. B 82, 245304.CrossRefGoogle Scholar
  101. 101.
    A. Franceschetti and A. Zunger (2000). Appl. Phys. Lett. 76, (13), 1731.CrossRefGoogle Scholar
  102. 102.
    P. C. Chen and K. B. Whaley (2004). Phys. Rev. B 70, (4), 45311.CrossRefGoogle Scholar
  103. 103.
    L. Wang (2009). Energy Environ. Sci. 2, 944.CrossRefGoogle Scholar
  104. 104.
    P. Yang, S. Tretiak, A. Masunov, and S. Ivanov (2008). J. Chem. Phys. 129, 074709.CrossRefGoogle Scholar
  105. 105.
    S. Y. Chung, S. Lee, C. Liu, and D. Neuhauser (2009). J. Phys. Chem. B 113, 292.CrossRefGoogle Scholar
  106. 106.
    H. Chou, C. Tseng, K. Pillai, B. Hwang, and L. Y. Chen (2010). Nanoscale 2, 2679.CrossRefGoogle Scholar
  107. 107.
    J. Y. Rempel, B. L. Trout, M. G. Bawendi, and K. F. Jensen (2006). J. Phys. Chem. B 110, 18007.CrossRefGoogle Scholar
  108. 108.
    H. Liu (2009). J Phys. Chem. C 113, 3116.CrossRefGoogle Scholar
  109. 109.
    Y. B. Gu, K. Tan, and M. H. Lin (2010). J. Mol. Struct. 961, 62.Google Scholar
  110. 110.
    M. Zanella, A. Z. Abbasi, A. K. Schaper, and W. J. Parak (2010). J Phys. Chem. C 114, 6205.CrossRefGoogle Scholar
  111. 111.
    T. Inerbaev, A. Masunov, S. Khondaker, A. Dobrinescu, A. V. Plamada, and Y. Kawazoe (2009). J. Chem. Phys. 131, 044106.CrossRefGoogle Scholar
  112. 112.
    S. Kilina, S. Ivanov, and S. Tretiak (2009). J. Am. Chem. Soc. 131, 7717.CrossRefGoogle Scholar
  113. 113.
    H. Kim, S. Jang, S. Chung, S. Lee, Y. Lee, B. Kim, C. Liu, and D. Neuhauser (2009). J. Phys. Chem. C 114, 471.Google Scholar
  114. 114.
    K. Knowles, D. Tice, E. A. McArthur, G. C. Solomon, and E. A. Weiss (2009). J. Am. Chem. Soc. 132, 1041.CrossRefGoogle Scholar
  115. 115.
    C. Liu, S. Chung, S. Lee, S. Weiss, and D. Neuhauser (2009). J. Chem. Phys. 131, 174705.CrossRefGoogle Scholar
  116. 116.
    J. B. Sambur, S. C. Riha, D. Choi, and B. A. Parkinson (2010). Langmuir 26, 4839.CrossRefGoogle Scholar
  117. 117.
    P. Schapotschnikow, B. Hommersom, and T. J. H. Vlugt (2009). J. Phys. Chem. C 113, 12690.CrossRefGoogle Scholar
  118. 118.
    K. Nguyen, P. N. Day, and R. Pachter (2010). J. Phys. Chem. C 114, 16197.CrossRefGoogle Scholar
  119. 119.
    G. Pilania, T. Sadowski, and R. Ramprasad (2009). J. Phys. Chem. C 113, 1863.CrossRefGoogle Scholar
  120. 120.
    I. Csik, S. P. Russo, and P. Mulvaney (2008). J Phys. Chem. C 112, 20413.CrossRefGoogle Scholar
  121. 121.
    G. Nesher, L. Kronik, and J. Chelikowsky (2005). Phys. Rev. B 71, 3.CrossRefGoogle Scholar
  122. 122.
    J. Frenzel, J.-O. Joswig, and G. Seifert (2007). J. Phys. Chem. C 111, 10761.CrossRefGoogle Scholar
  123. 123.
    J. Schrier and L. W. Wang (2006). J. Phys. Chem. B 110, 11982.CrossRefGoogle Scholar
  124. 124.
    R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba, and M. Ishikawa (2006). J. Am. Chem. Soc. 128, 629.CrossRefGoogle Scholar
  125. 125.
    Frisch, M. J., G. W. Trucks, H. B. Schlegel et al., Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
  126. 126.
    Z. A. Peng and X. G. Peng (2002). J. Am. Chem. Soc. 124, (13), 3343.CrossRefGoogle Scholar
  127. 127.
    A. Kasuya, R. Sivamohan, Y. A. Barnakov, I. M. Dmitruck, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V. Belosludov, V. Sundararajan, and Y. Kawazoe (2004). Nat. Mater. 3, 99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandUSA
  2. 2.Center for Integrated Nanotechnologies (CINT)Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations