Advertisement

Journal of Cluster Science

, Volume 22, Issue 4, pp 555–561 | Cite as

Synthesis of CeVO4 Crystals with Different Sizes and Shapes

  • Baogeng Xie
  • Guanzhong Lu
  • Qiguang Dai
  • Yanqin Wang
  • Yun Guo
  • Yanglong Guo
Brief Communication

Abstract

Tetragonal CeVO4 was prepared through hydrothermal treatment and sonication method with the same precursor in the absence of any catalysts or templates, and the products were characterized by XRD, TEM and Raman. It is found that microrods, nanoparticles, nanorods and nanoplates have been obtained. The bigger nanorods produced through hydrothermal treatment have average diameters of 15–25 nm and lengths of 20–60 nm. The smaller nanorods prepared through ultrasound treatment have average diameters of 6–12 nm and lengths of 10–18 nm. Uniform nanoplates have been produced. The nanoplates produced through hydrothermal method are composed of CeVO4 and CeO2. The mechanism of shape changing has been discussed. And the existing vanadium which is sensitive to the pH value of synthesis solution may be a key factor for the resulted sizes and shapes of the obtained nanocrystals. The samples prepared through hydrothermal treatment and sonication method were used as the catalysts for the combustion of trichloroethylene to test their catalytic activity.

Keywords

Nanomaterial Cerium vanadate Hydrothermal synthesis Sonication method 

Notes

Acknowledgments

This project was supported financially by National Basic Research Program of China (2010CB732300), the national high technology research and development program of China (2011AA03A406) and Commission of Education of Shanghai Municipality (2008CG35).

References

  1. 1.
    Z. M. Fang, Q. Hong, Z. H. Zhou, S. J. Dai, W. Z. Weng, and H. L. Wan (1999). Catal. Lett. 61, 39.CrossRefGoogle Scholar
  2. 2.
    M. V. Martinez-Huerta, J. M. Coronado, M. Fernandez-Garcia, A. Iglesias-Juez, G. Deo, J. L. G. Fierro, and M. A. Banares (2004). J. Catal. 225, 240.CrossRefGoogle Scholar
  3. 3.
    Y. Terada, K. Shimamura, V. V. Kochurikhin, L. V. Barashov, M. A. Ivanov, and T. Fukuda (1996). J. Cryst. Growth 167, 369.CrossRefGoogle Scholar
  4. 4.
    R. A. Fields, M. Birnbaum, and C. L. Fincher (1987). Appl Phys. Lett. 51, 1885.CrossRefGoogle Scholar
  5. 5.
    J. R. Oconnor (1966). Appl. Phys. Lett. 9, 407.CrossRefGoogle Scholar
  6. 6.
    J. R. Gambino and C. J. Guare (1963). Nature 198, 1084.CrossRefGoogle Scholar
  7. 7.
    J. W. Stouwdam, M. Raudsepp, and F. van Veggel (2005). Langmuir 21, 7003.CrossRefGoogle Scholar
  8. 8.
    A. Huignard, T. Gacoin, and J. P. Boilot (2000). Chem. Mater. 12, 1090.CrossRefGoogle Scholar
  9. 9.
    S. Mahapatra, S. K. Nayak, G. Madras, and T. N. G. Row (2008). Ind. Eng. Chem. Res. 47, 6509.CrossRefGoogle Scholar
  10. 10.
    R. K. Selvan, A. Gedanken, P. Anikumar, G. Manikandan, and C. Karunakaran (2009). J. Clust. Sci. 20, 291.CrossRefGoogle Scholar
  11. 11.
    L. H. Brixner, M. M. Abraham, and L. A. Boatner (1994). J. Solid State Chem. 109, 197.CrossRefGoogle Scholar
  12. 12.
    F. Luo, C. J. Jia, W. Song, L. P. You, and C. H. Yan (2005). Cryst. Growth. Des. 5, 137.CrossRefGoogle Scholar
  13. 13.
    J. F. Liu and Y. D. Li (2007). J. Mater. Chem. 17, 1797.CrossRefGoogle Scholar
  14. 14.
    L. Zhu, Q. Li, J. Y. Li, D. X. Liu, J. Meng, and X. Q. Cao (2007). J. Nanopart. Res. 9, 261.CrossRefGoogle Scholar
  15. 15.
    R. C. Ropp and B. Caroll (1977). J.Inorg. Nucl. Chem. 39, 1303.CrossRefGoogle Scholar
  16. 16.
    L. D. Sun, Y. X. Zhang, J. Zhang, C. H. Yan, C. S. Liao, and Y. Q. Lu (2002). Solid State Commun. 124, 35.CrossRefGoogle Scholar
  17. 17.
    H. Wu, H. F. Xu, Q. Su, T. H. Chen, and M. M. Wu (2003). J. Mater. Chem. 13, 1223.CrossRefGoogle Scholar
  18. 18.
    Q. G. Dai, X. Y. Wang, and G. Z. Lu (2008). Appl. Catal. B Environ. 81, 192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Baogeng Xie
    • 1
  • Guanzhong Lu
    • 1
  • Qiguang Dai
    • 1
  • Yanqin Wang
    • 1
  • Yun Guo
    • 1
  • Yanglong Guo
    • 1
  1. 1.Key Laboratory for Advanced Materials and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations