Advertisement

Journal of Cluster Science

, Volume 23, Issue 1, pp 95–114 | Cite as

Deuterium Clusters D N and Mixed K–D and D–H Clusters of Rydberg Matter: High Temperatures and Strong Coupling to Ultra-Dense Deuterium

  • Leif HolmlidEmail author
Original Paper

Abstract

Ultra-dense deuterium D(−1) can be formed by a catalytic process from Rydberg Matter (RM) of deuterium as reported previously. Laser-induced inertial confinement fusion (ICF) has recently been observed in this material. The formation of D(−1) is now studied through experiments observing the deuterium RM clusters D N in excitation levels n B  = 1, 3 and 4. These levels are intermediate in the formation process of D(−1). Laser-induced fragmentation is used, with neutral time-of-flight (TOF) and TOF–MS measurements of the kinetic energy release (KER) from the quantized Coulomb explosions (CE). Several types of pure D N clusters, mixed clusters containing both D and H atoms, and clusters containing both D and K atoms are identified. The large planar RM clusters which are common for H and K are less common for D. The neutral D N clusters are small and have high kinetic temperature, typically at 100 K instead of 10 K for K N and H N . Large D N + clusters are only observed when an electric field is applied, probably stabilized by increased cooling. A strong coupling of the D(1) laser fragmentation signal to the ultra-dense D(−1) signal is observed, and the materials D(1) and D(−1) are two rapidly interchangeable forms of quantum fluids.

Keywords

Ultra-dense deuterium Deuterium clusters TOF–MS Coulomb explosion Rydberg Matter 

References

  1. 1.
    S. Badiei, P. U. Andersson, and L. Holmlid (2009). Int. J. Hydrog. Energy 34, 487.CrossRefGoogle Scholar
  2. 2.
    S. Badiei, P. U. Andersson, and L. Holmlid (2009). Int. J. Mass Spectrom. 282, 70.CrossRefGoogle Scholar
  3. 3.
    S. Badiei, P. U. Andersson, and L. Holmlid (2010). Phys. Scr. 81, 045601.CrossRefGoogle Scholar
  4. 4.
    S. Badiei, P. U. Andersson, and L. Holmlid (2010). Appl. Phys. Lett. 96, 124103.CrossRefGoogle Scholar
  5. 5.
    P. U. Andersson and L. Holmlid (2010). Phys. Lett. A 374, 2856.CrossRefGoogle Scholar
  6. 6.
    L. Holmlid, H. Hora, G. Miley, and X. Yang (2009). Laser Part. Beams 27, 529.CrossRefGoogle Scholar
  7. 7.
    P. U. Andersson and L. Holmlid (2009). Phys. Lett. A 373, 3067.CrossRefGoogle Scholar
  8. 8.
    S. Badiei, P. U. Andersson, and L. Holmlid (2010). Laser Part. Beams 28, 313.CrossRefGoogle Scholar
  9. 9.
    F. Winterberg (2010). J. Fusion Energy 29, 317.CrossRefGoogle Scholar
  10. 10.
    É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov (1992). Sov. Phys. JETP 75, 440.Google Scholar
  11. 11.
    E. A. Manykin, M. I. Ojovan, and P. P. Poluektov (2006). Proc. SPIE 6181, 618105.CrossRefGoogle Scholar
  12. 12.
    L. Holmlid (1998). Chem. Phys. 237, 11.CrossRefGoogle Scholar
  13. 13.
    L. Holmlid (2010). J. Cluster Sci. 21, 637.CrossRefGoogle Scholar
  14. 14.
    L. Holmlid and P. G. Menon (2001). Appl. Catal. A 212, 247.CrossRefGoogle Scholar
  15. 15.
    L. Holmlid (2002). J. Phys. Condens. Matter 14, 13469.CrossRefGoogle Scholar
  16. 16.
    S. Badiei and L. Holmlid (2002). Chem. Phys. 282, 137.CrossRefGoogle Scholar
  17. 17.
    H. Åkesson, S. Badiei, and L. Holmlid (2006). Chem. Phys. 321, 215.CrossRefGoogle Scholar
  18. 18.
    J. Wang and L. Holmlid (2002). Chem. Phys. 277, 201.CrossRefGoogle Scholar
  19. 19.
    S. Badiei and L. Holmlid (2002). Int. J. Mass Spectrom. 220, 127.CrossRefGoogle Scholar
  20. 20.
    S. Badiei and L. Holmlid (2006). J. Phys. B At. Mol. Opt. Phys. 39, 4191.CrossRefGoogle Scholar
  21. 21.
    S. Badiei and L. Holmlid (2005). Phys. Lett. A 344, 265.CrossRefGoogle Scholar
  22. 22.
    L. Holmlid (2007). Mol. Phys. 105, 933.CrossRefGoogle Scholar
  23. 23.
    L. Holmlid (2008). J. Mol. Struct. 885, 122.CrossRefGoogle Scholar
  24. 24.
    A. Kotarba, J. Dmytrzyk, U. Narkiewicz, and A. Baranski (2001). React. Kinet. Catal. Lett. 74, 143.CrossRefGoogle Scholar
  25. 25.
    A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, and L. Holmlid (2000). Catal. Lett. 67, 129.CrossRefGoogle Scholar
  26. 26.
    A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, and G. Djega-Mariadassou (2000). Stud. Surf. Sci. Catal. (Int. Congr. Catal. 2000 A) 130A, 485.Google Scholar
  27. 27.
    M. Chiesa, E. Giamello, C. Di Valentin, G. Pacchioni, Z. Sojka, and S. Van Doorslaer (2005). J. Am. Chem. Soc. 127, 16935.CrossRefGoogle Scholar
  28. 28.
    I. Mourachko, W. Li, and T. F. Gallagher (2004). Phys. Rev. A 70, 031401.CrossRefGoogle Scholar
  29. 29.
    W. R. Anderson, M. P. Robinson, J. D. D. Martin, and T. F. Gallagher (2002). Phys. Rev. A 65, 063404.CrossRefGoogle Scholar
  30. 30.
    J.-H. Choi, B. Knuffmann, T. Cubel Liebisch, A. Reinhard, and G. Raithel (2006). Adv. At. Mol. Opt. Phys. 54, 132.Google Scholar
  31. 31.
    V. I. Yarygin, V. N. Sidel’nikov, I. I. Kasikov, V. S. Mironov, and S. M. Tulin (2003). JETP Lett. 77, 280.CrossRefGoogle Scholar
  32. 32.
    R. Svensson and L. Holmlid (1999). Phys. Rev. Lett. 83, 1739.CrossRefGoogle Scholar
  33. 33.
    G. R. Meima and P. G. Menon (2001). Appl. Catal. A 212, 239.CrossRefGoogle Scholar
  34. 34.
    M. Muhler, R. Schlögl, and G. Ertl (1992). J. Catal. 138, 413.CrossRefGoogle Scholar
  35. 35.
    A. Kotarba and L. Holmlid (2009). Phys. Chem. Chem. Phys. 11, 4351.CrossRefGoogle Scholar
  36. 36.
    L. Holmlid (2008). Surf. Sci. 602, 3381.CrossRefGoogle Scholar
  37. 37.
    L. Holmlid (2004). J. Phys. B At. Mol. Opt. Phys. 37, 357.CrossRefGoogle Scholar
  38. 38.
    S. Badiei and L. Holmlid (2003). Chem. Phys. Lett. 376, 812.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryUniversity of GothenburgGöteborgSweden

Personalised recommendations