Journal of Cluster Science

, Volume 22, Issue 3, pp 321–329 | Cite as

Rational Design of Small 3D Gold Clusters

Original Paper


We designed a series of small 3D gold clusters using a four-atomic tetrahedron with a four center–two electron (4c–2e) bond inside as a building block. The follow-up results of the unbiased global minimum searches proved that indeed the designed 3D structures containing small tetrahedral building blocks with a 4c–2e bond inside are either global minimum structures or low-lying isomers. We believe that the proposed way of building 3D clusters could be used for rational design of other 3D gold clusters.

Graphical Abstract


Clusters Gold Chemical bonding AdNDP 



Funding for this research was provided by the National Science Foundation (CHE-1057746). Computer time from the Center for High Performance Computing at Utah State University is gratefully acknowledged.


  1. 1.
    M. Haruta, T. Kobayashi, H. Sano, and N. Yamada (1987). Chem. Lett. 16, 405.CrossRefGoogle Scholar
  2. 2.
    M. A. Omary, M. A. Rawashdeh-Omary, C. C. Chusuei, J. P. Fackler Jr., and P. S. Bagus (2001). J. Chem. Phys. 114, 10695.CrossRefGoogle Scholar
  3. 3.
    F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes (2002). J. Chem. Phys. 117, 6982.CrossRefGoogle Scholar
  4. 4.
    S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes (2002). J. Chem. Phys. 116, 4094.CrossRefGoogle Scholar
  5. 5.
    A. V. Walker (2005). J. Chem. Phys. 122, 094310.CrossRefGoogle Scholar
  6. 6.
    H. Hakkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. S. Wang (2003). J. Phys. Chem. A 107, 6168.CrossRefGoogle Scholar
  7. 7.
    J. Li, X. Li, H. J. Zhai, and L. S. Wang (2003). Science 299, 864.CrossRefGoogle Scholar
  8. 8.
    H. F. Zhang, M. Stender, R. Zhang, C. M. Wang, J. Li, and L. S. Wang (2004). J. Phys. Chem. B 108, 12259.CrossRefGoogle Scholar
  9. 9.
    M. Ji, X. Gu, X. Li, X. G. Gong, J. Li, and L. S. Wang (2005). Angew. Chem. Int. Ed. 44, 7119.CrossRefGoogle Scholar
  10. 10.
    S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng (2006). Proc. Natl. Acad. Sci. (USA) 103, 8326.Google Scholar
  11. 11.
    M. F. Bertino, Z. M. Sun, R. Zhang, and L. S. Wang (2006). J. Phys. Chem. B 110, 21416.CrossRefGoogle Scholar
  12. 12.
    X. Xing, B. Yoon, U. Landman, and J. H. Parks (2006). Phys. Rev. B: Condens. Matter Mater. Phys. 74, 165423.CrossRefGoogle Scholar
  13. 13.
    R. M. Olson and M. S. Gordon (2007). J. Chem. Phys. 126, 214310.CrossRefGoogle Scholar
  14. 14.
    S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng (2007). J. Phys. Chem. C 111, 4190.CrossRefGoogle Scholar
  15. 15.
    X. Gu, S. Bulusu, X. Li, X. C. Zeng, J. Li, X. G. Gong, and L. S. Wang (2007). J. Phys. Chem. C 111, 8228.CrossRefGoogle Scholar
  16. 16.
    W. Huang, M. Ji, C. D. Dong, X. Gu, L. M. Wang, X. G. Gong, and L. S. Wang (2008). ACS Nano 2, 897.CrossRefGoogle Scholar
  17. 17.
    M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappess, and F. Furche (2008). Phys. Rev. A: At. Mol. Opt. Phys. 77, 053202.CrossRefGoogle Scholar
  18. 18.
    M. Mantina, R. Valero, and D. G. Truhlar (2009). J. Chem. Phys. 131, 064706.CrossRefGoogle Scholar
  19. 19.
    L. Ferrighi, B. Hammer, and G. K. H. Madsen (2009). J. Am. Chem. Soc. 131, 10605.CrossRefGoogle Scholar
  20. 20.
    W. Huang and L. S. Wang (2009). Phys. Chem. Chem. Phys. 11, 2663.CrossRefGoogle Scholar
  21. 21.
    W. Huang and L. S. Wang (2009). Phys. Rev. Lett. 102, 153401.CrossRefGoogle Scholar
  22. 22.
    W. Huang, S. Bulusu, R. Pal, X. C. Zeng, and L. S. Wang (2009). ACS Nano 3, 1225.CrossRefGoogle Scholar
  23. 23.
    P. Pyykko (2004). Angew. Chem. Int. Ed. 43, 4412.CrossRefGoogle Scholar
  24. 24.
    H. Hakkinen (2008). Chem. Soc. Rev. 37, 1847.CrossRefGoogle Scholar
  25. 25.
    R. B. King, Z. Chen, and P. v. R. Schleyer (2004). Inorg. Chem. 43, 4564.CrossRefGoogle Scholar
  26. 26.
    D. Yu. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.CrossRefGoogle Scholar
  27. 27.
    B. Li, S. J. Kim, G. J. Miller, and J. D. Corbett (2009). Inorg. Chem. 48, 6573.CrossRefGoogle Scholar
  28. 28.
    Q. Lin and J. D. Corbett (2010). J. Am. Chem. Soc. 132, 5662.CrossRefGoogle Scholar
  29. 29.
    B. B. Averkiev (2009). Geometry and electronic structure of doped clusters via the Coalescence Kick Method. PhD Dissertation. Utah State University, Logan, Utah.Google Scholar
  30. 30.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  31. 31.
    S. H. Vosko, L. Wilk, and M. Nusair (1980). Can. J. Phys. 58, 1200.CrossRefGoogle Scholar
  32. 32.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  33. 33.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  34. 34.
    M. Dolg, U. Wedig, H. Stoll, and H. Preuss (1987). J. Chem. Phys. 86, 866.CrossRefGoogle Scholar
  35. 35.
    J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408.CrossRefGoogle Scholar
  36. 36.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  37. 37.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.CrossRefGoogle Scholar
  38. 38.
    D. Yu. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.CrossRefGoogle Scholar
  39. 39.
    D. Yu. Zubarev, N. Robertson, D. Domin, J. McClean, J. Wang, W. A. Lester Jr., R. Whitesides, X. You, and M. Frenklah (2010). J. Phys. Chem. C 114, 5429.CrossRefGoogle Scholar
  40. 40.
    A. P. Sergeeva, B. B. Averkiev, and A. I. Boldyrev, in G. Parkin (ed.), Metal-Metal Bonding. Structure and Bonding Book Series, vol. 136 (Springer, Berlin/Heidelberg, 2010), pp. 275–306.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations