Journal of Cluster Science

, Volume 22, Issue 3, pp 355–363 | Cite as

Jahn–Teller Distortion Versus Spin–Orbit Splitting: Symmetry of Small Heavy-Metal Atom Clusters

Original Paper

Abstract

Metal clusters often show slight deviations from high molecular point group symmetry. The reason for this is a Jahn–Teller distortion because of partial occupation of orbitals that are degenerate in the highly symmetric case. For heavy elements spin–orbit coupling, which usually is not regarded in quantum chemical treatments of clusters, becomes non-negligible. This leads to splitting of degenerate orbitals, so that the reason for distortion is no longer given. In a rigorous study of neutral, cationic and anionic 4–6 atomic clusters of W, Re, Tl and Pb it is demonstrated that in some cases regarding spin–orbit coupling indeed yields a highly symmetric global minimum structure, whereas neglecting this effect leads to distorted structures of lower symmetry.

Keywords

Jahn–Teller effect Spin–orbit coupling Metal clusters Density functional study 

References

  1. 1.
    R. Ahlrichs and S. Elliott (1999). Phys. Chem. Chem. Phys. 2, 313.Google Scholar
  2. 2.
    F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes (2002). J. Chem. Phys. 117, 6982.CrossRefGoogle Scholar
  3. 3.
    F. Weigend and A. Baldes (2010). J. Chem. Phys. 133, 174102.CrossRefGoogle Scholar
  4. 4.
    U. Wedig, V. Saltykov, J. Nuss, and M. Jansen (2010). J. Am. Chem. Soc. 132, 12458.CrossRefGoogle Scholar
  5. 5.
    V. Saltykov, J. Nuss, U. Wedig, and M. Jansen (2011). Z. Allg. Anorg. Chem. 637, 357.CrossRefGoogle Scholar
  6. 6.
    M. Sierka, J. Döbler, J. Sauer, G. Santambrogio, M. Brümmer, L. Wöste, E. Janssens, G. Meijer, and K. R. Asmis (2007). Angew. Chem. Int. Ed. 46, 3372.CrossRefGoogle Scholar
  7. 7.
    A. D. Becke (1988). Phys. Rev. A 38, 3098.CrossRefGoogle Scholar
  8. 8.
    J. P. Perdew (1986). Phys. Rev. B 33, 8822.CrossRefGoogle Scholar
  9. 9.
    B. Metz, H. Stoll, and M. Dolg (2000). J. Chem. Phys. 113, 2563.CrossRefGoogle Scholar
  10. 10.
    D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009). J. Chem. Phys. 130, 164108.CrossRefGoogle Scholar
  11. 11.
    F. Weigend (2006). Phys. Chem. Chem. Phys. 8, 1057.CrossRefGoogle Scholar
  12. 12.
    TURBOMOLE V6.3, TURBOMOLE GmbH Karlsruhe, 2011, http://www.turbomole.de. TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989–2007, TURBOMOLE GmbH since 2007.
  13. 13.
    M. K. Armbruster, F. Weigend, C. van Wüllen, and W. Klopper (2008). Phys. Chem. Chem. Phys. 10, 1748–1756.CrossRefGoogle Scholar
  14. 14.
    A. Baldes and F. Weigend (in preparation) (the feature is available in TURBOMOLE V6.3).Google Scholar
  15. 15.
    P. Nava, M. Sierka, and R. Ahlrichs (2003). Phys. Chem. Chem. Phys. 5, 3372.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexander Baldes
    • 1
  • Rebekka Gulde
    • 1
  • Florian Weigend
    • 1
    • 2
  1. 1.Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Institut für Nanotechnologie, Karlsruher Institut für TechnologieEggenstein-LeopoldshafenGermany

Personalised recommendations