Journal of Cluster Science

, Volume 22, Issue 2, pp 121–129 | Cite as

Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity

  • Sunita Jadhav
  • Suresh Gaikwad
  • Madhav Nimse
  • Anjali Rajbhoj
Original Paper

Abstract

Copper oxide nanoparticles were prepared by electrochemical reduction method using tetra butyl ammonium bromide (TBAB) as structure directing agent in an organic medium viz. tetra hydro furan (THF) and acetonitrile (ACN) in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared using simple electrolysis cell in which the sacrificial anode as a commercially available copper metal sheet and platinum (inert) sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes, and concentration of stabilizers are used to control the size of nanoparticles. The synthesized copper oxide nanoparticles were characterized by using UV–Visible, FT-IR, XRD, SEM–EDS and TEM analysis techniques. The nanoparticles were tested for antibacterial activity against human pathogens like Escherichia coli (E. coli) and Staphylococcus strains and which was proved to be excellent.

Keywords

Electrochemical cell Tetra butyl ammonium bromide Copper oxide nanoparticles Human pathogens Antibacterial activity 

Notes

Acknowledgment

We are grateful to the Head, Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad-431 004 for providing laboratory facility.

References

  1. 1.
    H. Gleiter (2000). Acta Mater. 48, 1.CrossRefGoogle Scholar
  2. 2.
    A. Curtis and C. Wilkinson (2001). Trends Biotechnol. 19, 97.CrossRefGoogle Scholar
  3. 3.
    C. W. Waren and S. Nie (1998). Science 281, 2016.CrossRefGoogle Scholar
  4. 4.
    A. Vascashta and D. Dimova Malinovska (2005). Sci. Technol. Adv. Mater. 6, 312.CrossRefGoogle Scholar
  5. 5.
    R. Langer (2001). Science 293, 58.CrossRefGoogle Scholar
  6. 6.
    K. Roy, H. Q. Mao, S. K. Huang, and K. W. Leong (1999). Nat. Med. 5, 387.CrossRefGoogle Scholar
  7. 7.
    E. Sachlors, D. Gotora, and J. T. Czernuszka (2006). Tissue Eng. 12, 2479.CrossRefGoogle Scholar
  8. 8.
    Z. P. Xu, Q. H. Zeng, G. Q. Lu, and A. B. Yu (2006). Chem. Eng. Sci. 61, 1027.CrossRefGoogle Scholar
  9. 9.
    O. C. Farokhzad, J. Cheng, B. A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J. P. Richie, and R. Langer (2006). Natl. Acad. Sci. USA 103, 6315.CrossRefGoogle Scholar
  10. 10.
    P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002). Langmuir 18, 6679.CrossRefGoogle Scholar
  11. 11.
    I. Sondi and B. Salopek-Sondi (2004). J. Colloids Interface Sci. 275, 177.CrossRefGoogle Scholar
  12. 12.
    A. Panacek, K. vitek, R. Prucek, M. Kolar, R. Vererova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril (2006). J. Phys. Chem. B 110, 16248.CrossRefGoogle Scholar
  13. 13.
    A. H. Pfund (1916). Phys. Rev. 3, 289.CrossRefGoogle Scholar
  14. 14.
    A. E. Rakhshni (1986). Solid State Electron. 29, 7.CrossRefGoogle Scholar
  15. 15.
    B. O. Seraphin and J. A. Aranovich, Springer-Verlag (Berlin, New York, 1979).Google Scholar
  16. 16.
    A. Junod, D. Eckert, G. Triscone, G. Muller, and W. Reichardt (1989). J. Phys. Condens. Matter 1, 8021.CrossRefGoogle Scholar
  17. 17.
    J. B. Forysth, P. J. Brown, and B. M. Wanklyn (1988). J. Phys. C: Solid State Phys. 21, 2917.CrossRefGoogle Scholar
  18. 18.
    W. Reichardt, F. Gompt, M. Ain, and B. M. Wanklyn (1990). J. Phys. B Condens. Matter 81, 19.CrossRefGoogle Scholar
  19. 19.
    F. Marabelh and G. B. Parravicini (1994). J. Phys. B 255, 199.Google Scholar
  20. 20.
    E. C. Antonio, P. A. Carlos, S. Eduardo, S. M. Julio, and Jose (2006). J. Mater. Sci. 41, 5208.CrossRefGoogle Scholar
  21. 21.
    H. Horiguchi, Chemistry of Antimicrobial Agents (Sankyo Press, Tokyo, 1980), 46.Google Scholar
  22. 22.
    M. Ojas, M. Bhagat, C. Gopalakrishnan, D. Kantha, and Arunachalam (2008). J. Exp. Nanosci. 3, 185.CrossRefGoogle Scholar
  23. 23.
    B. Li, S. Yu, J. Y. Hwang, and S. Shi (2002). J. Miner. Mater. Charact. Eng. 1, 61.Google Scholar
  24. 24.
    G. G. Condorelli, I. L. Costanzo, I. L. Fragala, S. Giuffrida, and G. Ventimiglia (2003). J. Mater. Chem. 13, 2409.CrossRefGoogle Scholar
  25. 25.
    M. T. Reetz and W. Helbig (1994). J. Am. Chem. Soc. 116, 740.Google Scholar
  26. 26.
    Noriomurase and S. Mahamuni (2002). J. Appl. Phys. 92, 1292.CrossRefGoogle Scholar
  27. 27.
    J. G. Yang, Y. L. Zhou, T. Okamoto, T. Bessho, S. Satake, R. Ichino, and M. Okido (2006). Chem. Lett. 35, 1190.CrossRefGoogle Scholar
  28. 28.
    J. G. Yang, T. Okamoto, R. Ichino, T. Bessho, S. Satake, and M. Okido (2006). Chem. Lett. 35, 648.CrossRefGoogle Scholar
  29. 29.
    H. Zhu, C. Zhang, and Y. Yin (2005). Nanotechnology 16, 3079.CrossRefGoogle Scholar
  30. 30.
    W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang, and J. Jiang (2005). J. Phys. Chem. B 109, 14016.Google Scholar
  31. 31.
    D. Tiwari, J. Behari, and P. Sen (2008). Curr. Sci. 95, 647.Google Scholar
  32. 32.
    G. K. Vertelov, Y. A. Krutyakov, O. V. Efremenkova, A. Y. Olenin, and G. V. Lisichkin (2008). Nanotechnology 19, 355707.CrossRefGoogle Scholar
  33. 33.
    P. K. Khanna, P. More, J. Jawalkar, Y. Patil, and M. Koteswar Rao (2009). J. Nanopart. Res. 11, 793.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sunita Jadhav
    • 1
  • Suresh Gaikwad
    • 1
  • Madhav Nimse
    • 2
  • Anjali Rajbhoj
    • 1
  1. 1.Department of ChemistryDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of ChemistryUniversity of PunePuneIndia

Personalised recommendations