Journal of Cluster Science

, Volume 21, Issue 2, pp 211–221 | Cite as

Structural and Spectral Characterization of Two Charge-Transfer Salts Formed by Ferrocenyl and Polyoxometalate Units

  • Haisheng Xu
  • Lei Zhang
  • Zuoxi Li
  • Zhanfeng Li
  • Huaiming Hu
  • Ganglin Xue
Original Paper

Abstract

Two charge-transfer (CT) salts based on the ferrocenyl cation CpFeCpCH2N+(CH3)3 and Keggin-type anion [PW12O40]3− or [SiMo12O40]4− with the ratio of ferrocenyl:polyanion of 3:1 or 4:1, [CpFeCpCH2N(CH3)3]3[PW12O40] (1) and [CpFeCp-CH2N+(CH3)3]4[SiMo12O40] (2), were synthesized in high yields (68–71%) by traditional solution synthetic method and their structures were determined by X-ray diffraction analysis. The two salts both crystallize in triclinic space group \( P\overline{1} \) and show the close interaction of the cyclopentadienyl ligand with the surface of the polyoxometalate. The UV–Vis diffuse reflectance spectra of 1 and 2 in the solid state indicate the presence of a new absorption band at λ max = 550 and 630 nm, respectively, attributed to charge-transfer transitions between the ferrocenyl donors and the POM acceptors. The large difference of the shapes and positions of fluorescence emission bands of salts from the start materials also suggested the occurrence of a charge transfer process between the ferrocenyl cation and polyanion.

Keywords

Charge-transfer Polyoxometalates Ferrocene Structure characterization 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (20973133), the Education Commission of Shaanxi Province (09JK783) and National Training Fund for the basic sciences (J083417/J0104).

Supplementary material

10876_2010_318_MOESM1_ESM.docx (286 kb)
Supplementary material 1 (DOCX 286 kb)

References

  1. 1.
    M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).Google Scholar
  2. 2.
    H. T. Evans (1971). J. Perspect. Struct. Chem. 4, 1.Google Scholar
  3. 3.
    M. T. Pope and A. Müller (1991). Angew.Chem., Int. Ed. Engl. 30, 34 (and references therein).Google Scholar
  4. 4.
    M. T. Pope, A. Müller (eds.) Polyoxometellates: From Platonic Solids to Antiretro-Viral Activity (Kluwer, Dordrecht, The Netherlands, 1994).Google Scholar
  5. 5.
    L. Ouahab, M. Bencharif, and D. C. R. Grandjean (1988). Acad. Sci. Paris, Ser. 2, 749.Google Scholar
  6. 6.
    S. Triki, L. Ouahab, J. Padiou, and D. Grandjean (1989). J. Chem. Soc. Chem. Commun. 1068.Google Scholar
  7. 7.
    L. Ouahab, S. Triki, D. Grandjean, M. Bencharif, C. Garrigou-Lagrange, and P. Delhaes, in R. M. Metzger, P. Day, and G. C. Papavassillou (eds.), Lower-Dimensional System and Molecular Crystal, vol. B 248 (Plenum Press, New York, 1991), p. 185.Google Scholar
  8. 8.
    C. J. Gómez-García, E. Coronado, S. Triki, L. Ouahab, and P. Delhaès (1993). Adv. Mater. 4, 283.CrossRefGoogle Scholar
  9. 9.
    A. Mhanni, L. Ouahab, O. Peňa, D. Grandjean, C. arrigou-Lagrange, and P. Delhaès (1991). Synth. Met. 41–43, 1703.Google Scholar
  10. 10.
    J. H. Liu, J. Peng, and E. B. Wang (2000). J. Mol. Struct. 525, 71.CrossRefGoogle Scholar
  11. 11.
    D. C. Crans, M. Mahroof-Tahir, O. P. Aderson, and M. M. Miller (1994). Inorg. Chem. 33, 5586.CrossRefGoogle Scholar
  12. 12.
    L. J. Zhang and Y. S. Zhou (2001). J. Mol. Struct. 570, 83.CrossRefGoogle Scholar
  13. 13.
    D. Attanasio, M. Bonamico, V. Fares, P. Imperatori, and L. Suber (1990). J. Chem. Soc. Dalton Trans. 3221.Google Scholar
  14. 14.
    J. Peng, E. B. Wang, and Y. S. Zhou (1998). J. Chem. Soc. Dalton Trans. 3865.Google Scholar
  15. 15.
    E. You, E. B. Wang, and Q. L. He (2000). J. Mol. Struct. 524, 133.CrossRefGoogle Scholar
  16. 16.
    P. L. Maguerès, L. Ouahab, S. Golhen, D. Grandjean, O. Peňa, J. C. Jegaden, C. J. Ómez-García, and P. Delhaès (1994). Inorg. Chem. 33, 5180.CrossRefGoogle Scholar
  17. 17.
    S. Golhen, L. Ouahab, D. Grandjean, and P. Molinié (1998). Inorg. Chem. 37, 1499.CrossRefGoogle Scholar
  18. 18.
    W. B. Yang, C. Z. Lu, and C. D. Wu (2003). J. Clust. Sci. 14, 421.CrossRefGoogle Scholar
  19. 19.
    P. L. Veya and J. K. Kochi (1995). J. Organomet. Chem. 488, C4.CrossRefGoogle Scholar
  20. 20.
    S. Juraja, T. Vu, P. J. S. Richardt, and A. M. Bond (2002). Inorg. Chem. 41, 1072.CrossRefGoogle Scholar
  21. 21.
    X. M. Liu, G. L. Xue, H. M. Hu, Q. C. Gao, F. Fu, and J. W. Wang (2006). J. Mol. Struct. 787, 101.CrossRefGoogle Scholar
  22. 22.
    Z. F. Li, R. R. Cui, B. Liu, G. L. Xue, H. M. Hu, F. Fu, and J. W. Wang (2009). J. Mol. Struct. 920, 436.CrossRefGoogle Scholar
  23. 23.
    Z. F. Li, R. R. Cui, G. L. Xue, H. M. Hu, F. Fu, and J. W. Wang (2009). J. Coord. Chem. 62, 1951.CrossRefGoogle Scholar
  24. 24.
    Z. F. Li, B. Liu, H. S. Xu, G. L. Xue, H. M. Hu, F. Fu, and J. W. Wang (2009). J. Organomet. Chem. 694, 2210.CrossRefGoogle Scholar
  25. 25.
    S. V. Rosokha and J. K. Kochi (2008). Acc. Chem. Res. 41, 641.CrossRefGoogle Scholar
  26. 26.
    A. Chemseddine, C. Sanchez, J. Livage, J. P. Launay, and M. Fournier (1984). Inorg. Chem. 23, 2609.CrossRefGoogle Scholar
  27. 27.
    J. K. Lindsay and C. R. Hauser (1957). J. Org. Chem. 22, 355.CrossRefGoogle Scholar
  28. 28.
    M. Che, M. Fournier, and J. P. Launay (1979). J. Chem. Phys. 71, 1954.CrossRefGoogle Scholar
  29. 29.
    C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeannin (1982). J. Am. Chem. Soc. 104, 3194.CrossRefGoogle Scholar
  30. 30.
    P. Seiler and J. D. Dunitz (1979). Acta Crystallogr. Sect. B B35, 1068.CrossRefGoogle Scholar
  31. 31.
    F. Takusagawa and T. F. Koetzle (1979). Acta Crystallogr. Sect. B 35, 1074.CrossRefGoogle Scholar
  32. 32.
    P. L. Maguerès, S. M. Hubig, S. V. Lindeman, P. Veya, and J. K. Kochi (2000). J. Am. Chem. Soc. 122, 10073.CrossRefGoogle Scholar
  33. 33.
    R. S. Mulliken (1952). J. Am. Chem. Soc. 74, 811.CrossRefGoogle Scholar
  34. 34.
    R. S. Mulliken and W. B. Person Molecular Complexes. A Lecture and Reprint Volume (Wiley, New York, 1969).Google Scholar
  35. 35.
    R. Foster. Organic Charge-Transfer Complexes (Academic Press, New York, 1969).Google Scholar
  36. 36.
    A. Vogler and H. Kunkely (1990). Top. Curr. Chem. 158, 1.Google Scholar
  37. 37.
    C. M. Prosser-McCartha, M. Kadkhodayan, M. M. Williamson, D. A. Bouchard, and C. L. Hill (1986). J. Chem. Soc. Chem. Commun. 1747.Google Scholar
  38. 38.
    S. Campidelli, L. Pérez, J. Rodríguez-López, J. Barberá, F. Langab, and F. Deschenauxa (2006). Tetrahedron 62, 2115.CrossRefGoogle Scholar
  39. 39.
    M. K. Seery, L. Guerin, R. J. Forster, E. Gicquel, V. Hultgren, A. M. Bond, A. G. Wedd, and T. E. Keyes (2004). J. Phys. Chem. A. 108, 7399.CrossRefGoogle Scholar
  40. 40.
    J. Chen, J. Q. Sha, J. Peng, Z. Y. Shi, A. X. Tian, and P. P. Zhang (2009). J. Mol. Struct. 917, 10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Haisheng Xu
    • 1
    • 2
  • Lei Zhang
    • 1
  • Zuoxi Li
    • 1
  • Zhanfeng Li
    • 1
  • Huaiming Hu
    • 1
  • Ganglin Xue
    • 1
  1. 1.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Department of ChemistryNorthwest UniversityXi’anChina
  2. 2.College of Chemistry and Chemical EngineeringXi’an Shiyou UniversityXi’anChina

Personalised recommendations