Advertisement

Journal of Cluster Science

, Volume 21, Issue 4, pp 637–653 | Cite as

Common Forms of Alkali Metals—New Rydberg Matter Clusters of Potassium and Hydrogen

  • Leif HolmlidEmail author
Original Paper

Abstract

Alkali metals can form low-density metallic phases, in their most well-ordered form called Rydberg Matter (RM). RM consists mainly of planar metallic clusters, with the number of atoms in each cluster not exceeding 100 according to experiments. Six-fold symmetric RM clusters in the most stable series K19, K37, K61 and K91 were observed by rotational radio-frequency spectroscopy and shown to be planar in point group D6h (Holmlid, J Mol Struct 885:122, 2008). Here, the RM clusters formed by K and H atoms are studied by neutral time-of-flight after pulsed laser fragmentation of RM formed from K and H. The kinetic energy of the fragments is due to laser initiated Coulomb explosions. Novel RM clusters of the type K N with N = 6, 9, 10, 13 and 15 are ejected from the material. They are necessarily planar due to the RM bonding, with two- or three-fold symmetry axes perpendicular to the plane. Pure hydrogen atom RM clusters H N are observed, demonstrating once more that H indeed is an alkali metal. Mixed clusters K M H N similar to hydrogen clusters where each K replaces an H atom as in KH6 are now also positively identified.

Keywords

Alkali metal Potassium Rydberg matter Low-density metal Hydrogen Cluster 

References

  1. 1.
    R. Côté (2005). Proc. SPIE 6014, 601415.CrossRefGoogle Scholar
  2. 2.
    E. Brion, K. Mølmer, and M. Saffman (2007). Phys. Rev. A 76, 022334.CrossRefGoogle Scholar
  3. 3.
    M. Weidemüller and C. Zimmermann (eds.), Cold Atoms and Molecules, Concepts, Experiments and Applications to Fundamental Physics (Wiley-VCH, Weinheim, 2009).Google Scholar
  4. 4.
    R. L. Sorochenko, in M. A. Gordon and R. L. Sorochenko (eds.), Radio Recombination Lines: 25 Years of Investigation (Kluwer, Dordrecht, 1990).Google Scholar
  5. 5.
    I. L. Beigman and V. S. Lebedev (1995). Phys. Rep. 250, 95.CrossRefGoogle Scholar
  6. 6.
    É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov (1980). Sov. Phys. Tech. Lett. 6, 95.Google Scholar
  7. 7.
    É. A. Manykin, M. I. Ozhovan, and P. P. Poluéktov (1992). Sov. Phys. JETP 75, 440.Google Scholar
  8. 8.
    L. Holmlid (2008). J. Mol. Struct. 885, 122.CrossRefGoogle Scholar
  9. 9.
    G. E. Norman (2001). JETP Lett. 73, 10.CrossRefGoogle Scholar
  10. 10.
    L. Holmlid (2007). Appl. Phys. B 87, 273.CrossRefGoogle Scholar
  11. 11.
    L. Holmlid (2008). J. Raman Spectr. 39, 1364.CrossRefGoogle Scholar
  12. 12.
    L. Holmlid (2007). Mol. Phys. 105, 933.CrossRefGoogle Scholar
  13. 13.
    A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, and L. Holmlid (2000). Catal. Lett. 67, 129.CrossRefGoogle Scholar
  14. 14.
    A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, and G. Djega-Mariadassou (2000). Stud. Surface Sci. Catal. (International Congress on Catalysis, 2000, Pt A) 130A, 485.Google Scholar
  15. 15.
    L. Holmlid (2002). J. Phys.: Condens. Matter 14, 13469.CrossRefGoogle Scholar
  16. 16.
    M. Chiesa, E. Giamello, C. Di Valentin, G. Pacchioni, Z. Sojka, and S. Van Doorslaer (2005). J. Am. Chem. Soc. 127, 16935.CrossRefGoogle Scholar
  17. 17.
    L. Holmlid (2008). Mon. Not. R. Astron. Soc. 384, 764.CrossRefGoogle Scholar
  18. 18.
    L. Holmlid (2006). Planet. Space Sci. 54, 101.CrossRefGoogle Scholar
  19. 19.
    L. Holmlid (2006). Icarus 180, 555.CrossRefGoogle Scholar
  20. 20.
    H. Nesse, D. Heinrich, B. Williams, U.-P. Hoppe, J. Stadsnes, M. Rietveld, W. Singer, U. Blum, M. I. Sandanger, and E. Trondsen (2008). Ann. Geophys. 26, 1071.CrossRefGoogle Scholar
  21. 21.
    L. Holmlid (2009). Astrobiol. 9, 535.CrossRefGoogle Scholar
  22. 22.
    A. Kotarba, J. Dmytrzyk, U. Narkiewicz, and A. Baranski (2001). React. Kinet. Catal. Lett. 74, 143.CrossRefGoogle Scholar
  23. 23.
    A. Kotarba and L. Holmlid (2009). Phys. Chem. Chem. Phys. 11, 4351.CrossRefGoogle Scholar
  24. 24.
    V. I. Yarygin, V. N. Sidelńikov, I. I. Kasikov, V. S. Mironov, and S. M. Tulin (2003). JETP Lett. 77, 280.CrossRefGoogle Scholar
  25. 25.
    I. Mourachko, W. Li, and T. F. Gallagher (2004). Phys. Rev. A 70, 031401.CrossRefGoogle Scholar
  26. 26.
    W. R. Anderson, M. P. Robinson, J. D. D. Martin, and T. F. Gallagher (2002). Phys. Rev. A 65, 063404.CrossRefGoogle Scholar
  27. 27.
    J.-H. Choi, B. Knuffmann, T. Cubel Liebisch, A. Reinhard, and G. Raithel (2006). Adv. At. Mol. Opt. Phys. 54, 132.Google Scholar
  28. 28.
    L. Holmlid (2004). J. Phys. B: At. Mol. Opt. Phys. 37, 357.CrossRefGoogle Scholar
  29. 29.
    L. Holmlid (2010). J. Nanopart. Res. 12, 273.CrossRefGoogle Scholar
  30. 30.
    T. Alpermann and L. Holmlid (2007). Spectrochim. Acta A 67, 877.CrossRefGoogle Scholar
  31. 31.
    L. Holmlid (1998). Chem. Phys. 237, 11.CrossRefGoogle Scholar
  32. 32.
    H. Åkesson, S. Badiei, and L. Holmlid (2006). Chem. Phys. 321, 215.CrossRefGoogle Scholar
  33. 33.
    S. Badiei and L. Holmlid (2006). J. Phys. B.: At. Mol. Opt. Phys. 39, 4191.CrossRefGoogle Scholar
  34. 34.
    J. Wang and L. Holmlid (2000). Chem. Phys. Lett. 325, 264.CrossRefGoogle Scholar
  35. 35.
    S. Badiei and L. Holmlid (2002). Int. J. Mass Spectrom. 220, 127.CrossRefGoogle Scholar
  36. 36.
    S. Badiei and L. Holmlid (2002). Chem. Phys. 282, 137.CrossRefGoogle Scholar
  37. 37.
    S. Badiei and L. Holmlid (2005). Phys. Lett. A 344, 265.CrossRefGoogle Scholar
  38. 38.
    “Rydberg Matter”, Wikipedia, http://en.wikipedia.org/wiki/Rydberg_matter.
  39. 39.
    F. Reif Fundamentals of statistical and thermal physics (MacGraw-Hill, New York, 1965).Google Scholar
  40. 40.
    M. Trebala, W. Rozek, L. Holmlid, M. Molenda, and A. Kotarba, submitted.Google Scholar
  41. 41.
    A. Kotarba, K. Engvall, J. B. C. Pettersson, M. Svanberg, and L. Holmlid (1995). Surf. Sci. 342, 327.CrossRefGoogle Scholar
  42. 42.
    K. Engvall, A. Kotarba, and L. Holmlid (1994). Catal. Lett. 26, 101.CrossRefGoogle Scholar
  43. 43.
    J. Wang, K. Engvall, and L. Holmlid (1999). J. Chem. Phys. 110, 1212.CrossRefGoogle Scholar
  44. 44.
    S. Badiei and L. Holmlid (2002). Mon. Not. R. Astron. Soc. 333, 360.CrossRefGoogle Scholar
  45. 45.
    L. Holmlid (2009). Chem. Phys. 358, 61.CrossRefGoogle Scholar
  46. 46.
    S. Badiei and L. Holmlid (2005). Appl. Phys. B 81, 549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryUniversity of GothenburgGöteborgSweden

Personalised recommendations