Journal of Cluster Science

, Volume 21, Issue 1, pp 45–55 | Cite as

Molecular Dynamics Simulation of the Melting and Coalescence in the Mixed Cu–Ni Nanoclusters

  • Guojian Li
  • Qiang Wang
  • Tie Liu
  • Kai Wang
  • Jicheng He
Original Paper


Molecular dynamics simulation with the embedded atom method was applied to study the melting and coalescence in the mixed Cu–Ni nanoclusters. The validity of the model was tested by examining the consistency of the phase diagrams of the (Cu682-mNim)682 and (Cu1048-mNim)1048 clusters with the Cu–Ni bulk. The coalescences of two mixed Cu–Ni clusters and a pure Cu cluster with a pure Ni cluster were simulated. The coalesced temperature Tc forming a liquid complex and melting temperature Tm of the cluster with the same size were compared. The results indicate that Tc is higher than Tm for the coalescences of both (CuNi)682 and (CuNi)1048 clusters. The analysis of the relationship between the Cu–Ni bond content and Tc indicates that the formation of the Cu–Ni bonds contributes a lot to the phenomenon.


Coalescence Mixed cluster Melting Molecular dynamics 


  1. 1.
    H. N. G. Wadley, X. Zhou, R. A. Johnson, and M. Neurock Prog (2001). Mater. Sci. 46, 329.Google Scholar
  2. 2.
    F. Baletto and R. Ferrando (2005). Rev. Mod. Phys. 77, 371.CrossRefGoogle Scholar
  3. 3.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.CrossRefGoogle Scholar
  4. 4.
    Y. G. Chushak and L. S. Bartell (2003). J. Phys. Chem. 107, 3747.Google Scholar
  5. 5.
    S. P. Huang and P. B. Balbuena (2002). J. Phys. Chem. 106, 7225.Google Scholar
  6. 6.
    S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla, and B. Joseph (2005). Phys. Rev. B 71, 195415.CrossRefGoogle Scholar
  7. 7.
    M. J. Lopez, P. A. Marcos, and J. A. Alonso (1996). J. Chem. Phys. 104, 1056.CrossRefGoogle Scholar
  8. 8.
    C. Mottet, G. Rossi, F. Baletto, and R. Ferrando (2005). Phys. Rev. Lett. 95, 035501.CrossRefGoogle Scholar
  9. 9.
    Z. H. Jin, H. W. Sheng, and K. Lu (1999). Phys. Rev. B 60, 141.CrossRefGoogle Scholar
  10. 10.
    L. J. Lewis, P. Jensen, and J.-L. Barrat (1997). Phys. Rev. B 56, 2248.CrossRefGoogle Scholar
  11. 11.
    F. Ding, A. Rosén, and K. Bolton (2004). Phys. Rev. B 70, 075416.CrossRefGoogle Scholar
  12. 12.
    S. Hendy, S. A. Brown, and M. Hyslop (2003). Phys. Rev. B 68, 241403(R).CrossRefGoogle Scholar
  13. 13.
    M. R. Zachariah and M. J. Carrier (1999). J. Aerosol Sci. 30, 1139.CrossRefGoogle Scholar
  14. 14.
    T. Hawa and M. R. Zachariah (2006). J. Aerosol Sci. 37, 1.CrossRefGoogle Scholar
  15. 15.
    F. J. Palacios and M. P. Iniguez (2002). Nucl. Instrum. Meth. B 196, 253.CrossRefGoogle Scholar
  16. 16.
    M. M. Mariscal, S. A. Dassie, and E. P. M. Leiva (2005). J. Chem. Phys. 123, 184505.CrossRefGoogle Scholar
  17. 17.
    G. J. Li, Q. Wang, D. G. Li, X. Lü, and J. C. He (2008). Phys. Lett. A 372, 6764.CrossRefGoogle Scholar
  18. 18.
    G. J. Li, Q. Wang, H. T. Li, K. Wang, and J. C. He (2008). Chin. Phys. B 17, 3343.CrossRefGoogle Scholar
  19. 19.
    X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-long, V. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly (2001). Acta Mater. 49, 4005.CrossRefGoogle Scholar
  20. 20.
    R. A. Johnson (1989). Phys. Rev. B 39, 12554.CrossRefGoogle Scholar
  21. 21.
    G. J. Li, Q. Wang, D. G. Li, X. Lü, and J. C. He (2009). Mater. Chem. Phys. 114, 746.CrossRefGoogle Scholar
  22. 22.
    F. Dorfbauer, T. Schrefl, M. Kirschner, G. Hrkac, D. Suess, O. Ertl, and J. Fidler (2006). J. Appl. Phys. 99, 08G706.CrossRefGoogle Scholar
  23. 23.
    Y. Qi, T. Cagin, W. L. Johnson, and W. A. Goddard III (2001). J. Chem. Phys. 115, 385.CrossRefGoogle Scholar
  24. 24.
    K. K. Nanda, S. N. Sahu, and S. N. Behera (2002). Phys. Rev. A 66, 013208.CrossRefGoogle Scholar
  25. 25.
    F. Ding, K. Bolton, and A. Rosen (2004). J. Vac. Sci. Technol. A 22, 1471.CrossRefGoogle Scholar
  26. 26.
    A. S. Liu Binary Alloy Phase Diagrams (Metallurgical Industry Press, Beijing, 2004).Google Scholar
  27. 27.
    J. M. Xiao The Subject of Alloys Energy (Shanghai Science and Technology Press, Shanghai, 1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Guojian Li
    • 1
  • Qiang Wang
    • 1
  • Tie Liu
    • 1
  • Kai Wang
    • 1
  • Jicheng He
    • 1
  1. 1.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education)Northeastern UniversityShenyangChina

Personalised recommendations