Journal of Cluster Science

, Volume 20, Issue 3, pp 601–609 | Cite as

Diversity of Functionalized Germanium Zintl Clusters: Syntheses and Theoretical Studies of [Ge9PdPPh3]3− and [Ni@(Ge9PdPPh3)]2−

Original Paper

Abstract

A new Zintl cluster [Ge9PdPPh3]3− has been isolated as (2,2,2-crypt)K+ salt through the reaction of K4Ge9 and Pd[PPh3]4 in ethylenediamine solutions and characterized via single-crystal X-ray crystallography. The as-prepared bimetallic [Ge9PdPPh3]3− cluster could successfully trap a nickel atom to form a trimetallic cluster [Ni@(Ge9PdPPh3)]2−. The coordination of Ge94− by PdPPh3 induces a one-electron oxidation and encapsulation of the Ni atom into the Ge93− cage leads to a further one-electron oxidation and a geometry transformation from C4v (nido) to C3v (closo).

Graphical Abstract

Keywords

Germanium Cluster Stannaspherene Crystal structure Zintl ion 

Supplementary material

10876_2009_266_MOESM1_ESM.doc (206 kb)
Supplementary material 1 (DOC 205 kb)

References

  1. 1.
    J. D. Corbett (2000). Angew. Chem. Int. Ed. 39, 670.CrossRefGoogle Scholar
  2. 2.
    S. C. Sevov and J. M. Goicoechea (2006). Organometallics 25, 5678.CrossRefGoogle Scholar
  3. 3.
    T. F. Fässler and S. D. Hoffmann (2004). Angew. Chem. Int. Ed. 43, 6242.CrossRefGoogle Scholar
  4. 4.
    A. Spiekermann, S. D. Hoffmann, and T. F. Fässler (2006). Angew. Chem. Int. Ed. 45, 3459.CrossRefGoogle Scholar
  5. 5.
    L. F. Cui, X. Huang, L. M. Wang, D. Y. Zubarev, A. I. Boldyrev, J. Li, and L. S. Wang (2006). J. Am. Chem. Soc. 128, 8390.CrossRefGoogle Scholar
  6. 6.
    L. F. Cui, X. Huang, L. M. Wang, J. Li, and L. S. Wang (2007). Angew. Chem. Int. Ed. 46, 742.CrossRefGoogle Scholar
  7. 7.
    L. F. Cui, X. Huang, L. M. Wang, J. Li, and L. S. Wang (2006). J. Phys. Chem. A 110, 10169.CrossRefGoogle Scholar
  8. 8.
    L. F. Cui and L. S. Wang (2008). Int. Rev. Phys. Chem. 27, 139.CrossRefGoogle Scholar
  9. 9.
    E. N. Esenturk, J. Fettinger, Y. F. Lam, and B. Eichhorn (2004). Angew. Chem. Int. Ed. 43, 2132.CrossRefGoogle Scholar
  10. 10.
    E. N. Esenturk, J. Fettinger, B. Eichhorn (2005). Chem. Commun. 247.Google Scholar
  11. 10.
    E. N. Esenturk, J. Fettinger, and B. Eichhorn (2006). J. Am. Chem. Soc. 128, 9178.CrossRefGoogle Scholar
  12. 12.
    J. M. Goicoechea and S. C. Sevov (2005). Angew. Chem. Int. Ed. 44, 4026.CrossRefGoogle Scholar
  13. 13.
    J. M. Goicoechea and S. C. Sevov (2005). J. Am. Chem. Soc. 127, 7676.CrossRefGoogle Scholar
  14. 14.
    Z. M. Sun, H. Xiao, J. Li, and L. S. Wang (2007). J. Am. Chem. Soc. 129, 9560.CrossRefGoogle Scholar
  15. 15.
    F. S. Kocak, P. Zavalij, Y. F. Lam, and B. W. Eichhorn (2008). Inorg. Chem. 47, 3515.CrossRefGoogle Scholar
  16. 16.
    B. Kesanli, J. E. Halsig, P. Zavalij, J. Fettinger, Y. F. Lam, and B. Eichhorn (2007). J. Am. Chem. Soc. 129, 4567.CrossRefGoogle Scholar
  17. 17.
    S. Scharfe, T. F. Fassler, S. Stegmaier, S. D. Hoffman, and K. Ruhland (2008). Chem. Eur. J. 14, 4479.CrossRefGoogle Scholar
  18. 18.
    J. Q. Wang, S. Stegmaier, and T. F. Fässler (2009). Angew. Chem. Int. Ed. 48, 1998.CrossRefGoogle Scholar
  19. 19.
    B. B. Zhou, M. S. Denning, D. L. Kays, and J. M. Goicoechea (2009). J. Am. Chem. Soc. 131, 2802.CrossRefGoogle Scholar
  20. 20.
    G. M. Sheldrick, SHELXTL (1998). Crystallographic Software Package, version 5.1; Bruker-AXS; Madison, WI.Google Scholar
  21. 21.
    ADF 2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (http://www.scm.com).
  22. 22.
    G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931.CrossRefGoogle Scholar
  23. 23.
    C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391.CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew and Y. Wang (1992). Phys. Rev. B 45, 13244.CrossRefGoogle Scholar
  25. 25.
    E. van Lenthe and E. J. Baerends (2003). J. Comp. Chem. 24, 1142.CrossRefGoogle Scholar
  26. 26.
    E. J. Baerends, D. E. Ellis, and P. Ros (1973). Chem. Phys. 2, 42.Google Scholar
  27. 27.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.CrossRefGoogle Scholar
  28. 28.
    B. Kesanli, J. Fettinger, and B. Eichhorn (2001). Chem. Eur. J. 7, 5277.CrossRefGoogle Scholar
  29. 29.
    J. Campbell, H. P. A. Mercier, F. Holger, D. Santry, D. A. Dixon, and G. J. Schrobilgen (2002). Inorg. Chem. 41, 86.CrossRefGoogle Scholar
  30. 30.
    J. M. Goicoechea and S. C. Sevov (2006). Organometallics 25, 4530.CrossRefGoogle Scholar
  31. 31.
    B. B. Zhou, M. S. Denning, C. Jones, J. M. Goicoechea (2009) Dalton Trans. 1571.Google Scholar
  32. 32.
    J. M. Goicoechea and S. C. Sevov (2006). J. Am. Chem. Soc. 128, 4155.CrossRefGoogle Scholar
  33. 33.
    E. N. Esenturk, J. Fettinger, and B. Eichhorn (2006). Polyhedron 25, 521.CrossRefGoogle Scholar
  34. 34.
    B. Kesanli, J. Fettinger, D. R. Gardner, and B. Eichhorn (2002). J. Am. Chem. Soc. 124, 4779.CrossRefGoogle Scholar
  35. 35.
    K. Wade (1971) J. Chem. Soc., Chem. Commun. 792.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsWashington State UniversityRichlandUSA
  2. 2.Chemical and Materials Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  3. 3.Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of EducationTsinghua UniversityBeijingChina

Personalised recommendations