Advertisement

Journal of Cluster Science

, Volume 20, Issue 2, pp 399–415 | Cite as

Iron Pentacarbonyl Promoted Addition of CO and MeOH to 1,4-Disubstituted-1,3-butadiyne and Formation of Vinylallyl and Butatriene Ligand Systems

  • Pradeep MathurEmail author
  • Vidya D. Avasare
  • Shaikh M. Mobin
Original Paper

Abstract

Photochemical reaction of methanol solution containing 1,4-diferrocenyl- or 1,4-diphenyl-1,3-butadiynes and iron pentacarbonyl into which CO was constantly bubbled, yielded diiron hexacarbonyl complexes of cumulene ligand systems, [η1: η3-{RCHC2CR(COOMe)}Fe2(CO)6] (1; E, R = Fc, 2; Z, R = Fc, 5; E, R = Ph, 6; Z, R = Ph) and [η3: η3-{RCHC2CR(COOMe)}Fe2(CO)6] (3; E, R = Fc, 7; E, R = Ph), formed by 1,4-addition of –COOMe and –H to the butadiynes. Additionally, diferrole, [Fe(CO)4{C(O)CC(Fc)C(O)}2],4 was obtained in minor quantity. Compounds 1, 2, 5 and 6 contain vinylallyl carbon framework which is stabilized by MeOC=O → Fe bond along with η1: η3 coordinated Fe2(CO)6 unit. Compounds 3 and 7 contain butatriene units which are stabilized by η3: η3 coordinated Fe2(CO)6 unit. Characterization of the new compounds was carried out by IR and 1H and 13C NMR spectroscopy and by mass spectrometry. Molecular structures of 27 were established by single crystal X-ray diffraction methods.

Graphical Abstract

Diiron hexacarbonyl complexes of cumulene ligand systems, [η1: η3 {RCHC2CR(COOMe)}] (1; E, R = Fc, 2; Z, R = Fc, 5; E, R = Ph, 6; Z, R = Ph) and [η3: η3-{RCHC2CR(COOMe)}] (3; E, R = Fc, 7; E, R = Ph) were obtained from photochemical reactions between Fe(CO)5, CO and methanol. Yield of the minor product, the diferrole, 4, was improved when the photoreaction was carried out in hexane in place of methanol

Keywords

Iron Carbonyl Vinylallyl Butatriene 

Notes

Acknowledgment

This work was supported by the Department of Science and Technology, Government of India. VDA is grateful to UGC, New Delhi for Teacher Fellowship.

References

  1. 1.
    P. J. Low and M. I. Bruce (2002). Adv. Organomet. Chem. 48, 72.Google Scholar
  2. 2.
    G. Gervasio, P. J. King, D. Marabello, and E. Sappa (2000). Inorg. Chim. Acta 350, 215.CrossRefGoogle Scholar
  3. 3.
    M. I. Bruce, N. N. Zaitseva, B. W. Skelton, and A. H. White (1996). Inorg. Chim. Acta 250, 129.CrossRefGoogle Scholar
  4. 4.
    R. D. Adams and B. Qu (2000). Organometallics 19, 2411.CrossRefGoogle Scholar
  5. 5.
    R. D. Adams and B. Qu (2001). J. Organomet. Chem. 620, 303.CrossRefGoogle Scholar
  6. 6.
    M. I. Bruce, B. W. Skelton, A. H. White, and N. N. Zaitseva (2002). J. Organomet. Chem. 650, 188.CrossRefGoogle Scholar
  7. 7.
    M. I. Bruce, N. N. Zaitseva, B. W. Skelton, and A. H. White (1997). J. Organomet. Chem. 536–537, 93.CrossRefGoogle Scholar
  8. 8.
    S. P. Tunik, V. D. Khripun, I. A. Balova, E. Nordlander, and P. R. Raithby (2001). Organometallics 20, 3854.CrossRefGoogle Scholar
  9. 9.
    M. I. Bruce, B. W. Skelton, A. H. White, and N. N. Zaitseva (1998). J. Organomet. Chem. 558, 197.CrossRefGoogle Scholar
  10. 10.
    M. I. Bruce, N. N. Zaitseva, B. W. Skelton, and A. H. White (1998). Russ. Chem. Bull. 47, 983.CrossRefGoogle Scholar
  11. 11.
    C. J. Adams, M. I. Bruce, B. W. Skelton, and A. H. White (1999). J. Organomet. Chem. 589, 213.CrossRefGoogle Scholar
  12. 12.
    J. A. Cabeza, F. Grepioni, M. Moreno, and V. Riera (2000). Organometallics 19, 5424.CrossRefGoogle Scholar
  13. 13.
    J. A. Cabeza, I. del Río, S. García-Granda, M. Moreno, E. Pérez-Carreño, and M. Suárez (2004). Organometallics 23, 5849.CrossRefGoogle Scholar
  14. 14.
    J. A. Cabeza, I. del Río, S. García-Granda, M. Moren, and V. Riera (2001). Organometallics 20, 4993.CrossRefGoogle Scholar
  15. 15.
    J. A. Cabeza, I. del Río, S. García-Granda, L. Martínez-Méndez, M. Moreno, and V. Riera (2003). Organometallics 22, 1164.CrossRefGoogle Scholar
  16. 16.
    L. P. Clarke, J. E. Davis, P. R. Raithby, M. A. Rennie, G. P. Shields, and E. Sparr (2000). J. Organomet. Chem. 609, 169.CrossRefGoogle Scholar
  17. 17.
    T. K. Huang, Y. Chi, S. M. Peng, and G. H. Lee (1999). Organometallics 18, 1675.CrossRefGoogle Scholar
  18. 18.
    J. F. Corrigan, N. J. Taylor, and A. J. Carty (1994). Organometallics 13, 3778.CrossRefGoogle Scholar
  19. 19.
    L. P. Clarke, J. E. Davies, P. R. Raithby, and G. P. Shields (2000). J. Chem. Soc., Dalton Trans. 4527. Google Scholar
  20. 20.
    S. Barlow and D. O’Hare (1997). Chem. Rev. 97, 637.CrossRefGoogle Scholar
  21. 21.
    C. Levanda, K. Bechgaard, and D. O. Cowan (1976). J. Org. Chem. 41, 2700.CrossRefGoogle Scholar
  22. 22.
    B. R. James Comprehensive Organometallic Chemistry, vol. 8 (Pergamon Press, Oxford, UK, 1980), p. 347.Google Scholar
  23. 23.
    B. R. James Comprehensive Organometallic Chemistry, vol. 8 (Pergamon Press, Oxford, UK, 1980), p. 359.Google Scholar
  24. 24.
    J. L. Speier (1979). Adv. Organomet. Chem. 17, 407.CrossRefGoogle Scholar
  25. 25.
    A. F. Hill and R. P. Melling (1990). J. Organomet. Chem. 396, C22.CrossRefGoogle Scholar
  26. 26.
    A. F. Hill, R. P. Melling, and A. R. Thompsett (1991). J. Organomet. Chem. 402, C8.CrossRefGoogle Scholar
  27. 27.
    M. C. Harris and A. F. Hill (1991). Organometallics 10, 3903.CrossRefGoogle Scholar
  28. 28.
    J. A. Cabeza, I. del Río, J. M. Fernández-Colinas, P. García-Älvarez, and D. Miguel (2006). Organometallics 25, 1492.CrossRefGoogle Scholar
  29. 29.
    R. D. Adams and B. Qu (2000). Organometallics 19, 4090.CrossRefGoogle Scholar
  30. 30.
    P. Mathur, V. D. Avasare, and S. M. Mobin (2008). Tetrahedron 64, 8943.CrossRefGoogle Scholar
  31. 31.
    P. Mathur, A. K. Bhunia, S. M. Mobin, V. K. Singh, and C. Srinivasu (2004). Organometallics 23, 3694.CrossRefGoogle Scholar
  32. 32.
    P. Mathur, S. Chatterjee, A. Das, and S. M. Mobin (2007). J. Organomet. Chem. 692, 819.CrossRefGoogle Scholar
  33. 33.
    P. Mathur, A. Das, S. Chatterjee, and S. M. Mobin (2008). J. Organomet. Chem. 693, 1919.CrossRefGoogle Scholar
  34. 34.
    P. Mathur, A. K. Singh, J. Mohanty, S. Chatterjee, and S. M. Mobin (2008). Organometallics 27, 5094.CrossRefGoogle Scholar
  35. 35.
    M. S. Sigman, C. E. Kerr, and B. E. Eaton (1993). J. Am. Chem. Soc. 115, 7545.CrossRefGoogle Scholar
  36. 36.
    G. M. Sheldrick SHELX 97, Program for Crystal Structure Solution and Refinement (University of Göttingen, Göttingen, 1997).Google Scholar
  37. 37.
    T. Mitsudo, H. Watanabe, K. Watanabe, Y. Watanabe, K. Kafuku, and K. Nakatsu (1982). Organometallics 1, 612.CrossRefGoogle Scholar
  38. 38.
    D. Bright and O. S. Mills (1972). Chem. Commun. 2465.Google Scholar
  39. 39.
    S. Eigemann, W. Förtsch, F. Hampel, and R. Schobert (1996). Organometallics 15, 1511.CrossRefGoogle Scholar
  40. 40.
    J. R. Fritch, P. C. Vollhardt, M. R. Thompson, and V. W. Day (1979). J. Am. Chem. Soc. 101, 2768.CrossRefGoogle Scholar
  41. 41.
    A. Sekiguchi, M. Tanaka, and T. Matsuo (2002). Silicon Chem. 1, 345.CrossRefGoogle Scholar
  42. 42.
    Y. Morimoto, Y. Higuchi, K. Wakamatsu, K. Oshima, K. Utimoto, and N. Yasuoka (1989). Bull. Chem. Soc. Jpn. 62, 639.CrossRefGoogle Scholar
  43. 43.
    V. V. Burlakov, P. Arndt, W. Baumann, A. Spannenberg, U. Rosenthal, P. Parameswaran, and E. D. Jemmis (2004). Chem. Commun. 2074.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pradeep Mathur
    • 1
    • 2
    Email author
  • Vidya D. Avasare
    • 1
  • Shaikh M. Mobin
    • 2
  1. 1.Chemistry DepartmentIndian Institute of Technology-BombayPowai, MumbaiIndia
  2. 2.National Single Crystal X-Ray Diffraction FacilityIndian Institute of Technology-BombayPowai, MumbaiIndia

Personalised recommendations