Advertisement

Journal of Cluster Science

, Volume 20, Issue 2, pp 375–387 | Cite as

Amide-based Room Temperature Molten Salt as Solvent cum Stabilizer for Metallic Nanochains

  • N. S. Venkata Narayanan
  • S. SampathEmail author
Original Paper

Abstract

A simple and efficient method for spontaneous organization of long assemblies of gold nanoparticles is described. This is achieved in a molten solvent containing acetamide, urea and ammonium nitrate that acts as a solvent cum stabilizer. There is no external aggregating agent or stabilizing agent added to the system. Depending on the concentration of the metal salt in the ternary melt, either chain-like assemblies or individual nanoparticles could be obtained. The amine groups present in the components of the melt (acetamide and urea) help in the stabilization of nanoparticles. Ammonium ions present in the eutectic mixture are likely to assist in the organization of the particles. The method is simple, highly reproducible and does not require any templating agent for the formation of chain-like assemblies.

Keywords

Gold nanoparticles Aggregation Room temperature molten solvent Acetamide-based eutectics 

Supplementary material

10876_2009_238_MOESM1_ESM.doc (4.3 mb)
(DOC 4453 kb)

References

  1. 1.
    Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov (2004). J. Phys. Chem. B 108, 6927.CrossRefGoogle Scholar
  2. 2.
    T. Hassenkam, K. Nørgaard, L. Iversen, C. J. Kiely, M. Brust, and T. Bjørnholm (2002). Adv. Mater. 14, 1126.CrossRefGoogle Scholar
  3. 3.
    G. Schmid, M. Bäumle, and N. Beyer (2000). Angew. Chem. Int. Ed. 39, 181.CrossRefGoogle Scholar
  4. 4.
    Z. Deng, Y. Tian, S. Lee, A. E. Ribbe, and C. Mao (2005). Angew. Chem. Int. Ed. 44, 3582.CrossRefGoogle Scholar
  5. 5.
    G. Braun, K. Inagaki, R. A. Estabrook, D. K. Wood, E. Levy, A. N. Cleland, G. F. Strouse, and N. O. Reich (2005). Langmuir 21, 10699.CrossRefGoogle Scholar
  6. 6.
    A. K. Boal, F. IIhan, J. E. DeRouchey, T. T. Albrecht, T. P. Russell, and V. M. Rotello (2000). Nature 404, 746.CrossRefGoogle Scholar
  7. 7.
    H. Lee, S. H. Choi, and T. G. Park (2006). Macromolecules 39, 23.CrossRefGoogle Scholar
  8. 8.
    C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). Nature 382, 607.CrossRefGoogle Scholar
  9. 9.
    Y. Kang, K. J. Erickson, and T. A. Taton (2005). J. Am. Chem. Soc. 127, 13800.CrossRefGoogle Scholar
  10. 10.
    Y. Jin and S. Dong (2002). Angew. Chem. Int. Ed. 41, 1040.CrossRefGoogle Scholar
  11. 11.
    Y. J. Yun, G. Park, S. Jung, and D. H. Ha (2006). Appl. Phys. Lett. 88, 063902.CrossRefGoogle Scholar
  12. 12.
    P. K. Jain, W. Qian, and M. A. El-Sayed (2006). J. Phys. Chem. B 110, 136.CrossRefGoogle Scholar
  13. 13.
    G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski (1999). Chem. Soc. Rev. 28, 179.CrossRefGoogle Scholar
  14. 14.
    S. Huang, H. Ma, X. Zhang, F. Yong, X. Feng, W. Pan, X. Wang, Y. Wang, and S. Chen (2005). J. Phys. Chem. B 109, 19823.CrossRefGoogle Scholar
  15. 15.
    S. Singamaneni and V. Bliznyuka (2005). Appl. Phys. Lett. 87, 162511.CrossRefGoogle Scholar
  16. 16.
    C. M. Liu, L. Guo, R. M. Wang, Y. Deng, H. B. Xu, and S. Yang (2004). Chem. Commun. 2726.Google Scholar
  17. 17.
    Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang (2006). Appl. Phys. Lett. 88, 081110.CrossRefGoogle Scholar
  18. 18.
    M. A. C. Duarte and L. M. Liz-Marzan (2006). J. Mater. Chem. 16, 22.CrossRefGoogle Scholar
  19. 19.
    M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou (2004). Angew. Chem. Int. Ed. 43, 4988.CrossRefGoogle Scholar
  20. 20.
    D. Astruc, F. Lu, and J. R. Aranzaes (2005). Angew. Chem. Int. Ed. 44, 7852.CrossRefGoogle Scholar
  21. 21.
    G. T. Wei, Z. Yang, C. Y. Lee, H. Y. Yang, and C. R. C. Wang (2004). J. Am. Chem. Soc. 126, 5036.CrossRefGoogle Scholar
  22. 22.
    G. E. McManis, A. N. Fletcher, D. E. Bliss, and M. H. Miles (1986). J. Appl. Electrochem. 16, 101.CrossRefGoogle Scholar
  23. 23.
    R. J. Gale and D. G. Lovering Molten Salt Techniques, vol. 4 (Plenum Press, New York, 1991).Google Scholar
  24. 24.
    T. Sehayak, M. Lahav, R. P. Biro, A. Vaskevich, and I. Rubinstein (2005). Chem. Mater. 17, 3743.CrossRefGoogle Scholar
  25. 25.
    M. J. Yacaman, C. G. Wing, M. Mirki, D. Q. Yang, K. N. Piyakis, and E. Sacher (2005). J. Phys. Chem. B 109, 9703.CrossRefGoogle Scholar
  26. 26.
    A. N. Shipway, M. Lahav, R. Gabai, and I. Willner (2000). Langmuir 16, 8789.CrossRefGoogle Scholar
  27. 27.
    D. A. Weitz and M. Oliveria (1984). Phys. Rev. Lett. 52, 1433.CrossRefGoogle Scholar
  28. 28.
    C. S. Weisbeker, M. V. Merritt, and G. M. Whitsides (1996). Langmuir 12, 3763.CrossRefGoogle Scholar
  29. 29.
    M. Sastry, N. Lala, V. Patil, A. G. Chittiboyina, and S. P. Chavan (1998). Langmuir 14, 4138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations