Journal of Cluster Science

, Volume 19, Issue 1, pp 259–273 | Cite as

Mixed-Valence 24-Vanadophosphate Decorated with Six RuII(dmso)3 Groups: [{RuII3(dmso)9PVV11VIVRuIIIO37(OH)3}2]8−

  • Li-Hua Bi
  • Sib Sankar Mal
  • Nadeen H. Nsouli
  • Michael H. Dickman
  • Ulrich Kortz
  • Saritha Nellutla
  • Naresh S. Dalal
  • Manuel Prinz
  • Georg Hofmann
  • Manfred Neumann
Original Paper

Abstract

The mixed-valence 24-vanadophosphate \( {\left[ {{\left\{ {{\text{Ru}}^{{{\text{II}}}}_{3} (dmso)_{9} {\text{PV}}^{{\text{V}}}_{{11}} {\text{V}}^{{{\text{IV}}}} {\text{Ru}}^{{{\text{III}}}} {\text{O}}_{{37}} {\text{(OH)}}_{3} } \right\}}_{2} } \right]}^{{8 - }} \) (1) has been synthesized and characterized in the solid state by IR, magnetism, EPR, XPS, and elemental analysis. Single-crystal X-ray analysis was carried out on \( {\text{Na}}_{8} {\left[ {{\left\{ {{\text{Ru}}^{{{\text{II}}}}_{3} (dmso)_{9} {\text{PV}}^{{\text{V}}}_{{11}} {\text{V}}^{{{\text{IV}}}} {\text{Ru}}^{{{\text{III}}}} {\text{O}}_{{37}} {\text{(OH)}}_{3} } \right\}}_{2} } \right]} \cdot 46{\text{H}}_{2} {\text{O}} \) (Na-1), which crystallizes in the triclinic system, space group \( \hbox{P}\overline{1} \), with a = 17.168(3) Å, b = 18.1971(14) Å, c = 20.1422(13) Å, α = 114.753(3)°, β = 99.390(4)°, γ = 95.124(4)°, and Z = 2. Polyanion 1 has an unusual, open structure composed of 2 RuIIIO6 octahedra, 2 VIVO6 octahedra, 14 VVO5 square-pyramids, 8 VVO4 tetrahedra, and 2 PO4 tetrahedra which are all directly linked via edges and corners. The outer surface of 1 is decorated with six RuII(dmso)3 groups. XPS studies on Na-1 confirm the presence of 2 RuIII and 6 RuII as well as 22 VV and 2 VIV centers. Magnetic susceptibility data on Na-1 show that the VIV–RuIII pairs are coupled antiferromagnetically, with J1 = −13 K and J2 ∼ −3 K. We did not detect any peak in our EPR measurements on Na-1, thus supporting the conclusion that Na-1 is diamagnetic in its ground state.

Keywords

Polyoxovanadate Mixed-valence cluster Self-assembly Ruthenium X-ray crystallography NMR XPS 

Supplementary material

10876_2007_180_MOESM1_ESM.doc (1.5 mb)
Supporting Information Available: Room temperature NMR spectra (13C, 1H, 51V) for Na-1 redissolved in H2O/D2O. (DOC 111 kb)

References

  1. 1.
    M. T. Pope, Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).Google Scholar
  2. 2.
    M. T. Pope and A. Müller (1991). Angew. Chem. 103, 56; Angew. Chem. Int. Ed. 30, 34.Google Scholar
  3. 3.
    Polyoxometalates : From Platonic Solids to Anti-Retroviral Activity, M. T. Pope, A. Müller (eds.) (Kluwer, Dordrecht, 1994).Google Scholar
  4. 4.
    Chem. Rev. (1998). 98, 1 (Special thematic issue on polyoxometalates).Google Scholar
  5. 5.
    Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications, M. T. Pope, and A. Müller (eds.) (Kluwer, Dordrecht, 2001).Google Scholar
  6. 6.
    Polyoxometalate Chemistry for Nano-Composite Design, T. Yamase, and M. T. Pope (eds.) (Kluwer: Dordrecht, 2002).Google Scholar
  7. 7.
    M. T. Pope (2003). Comp. Coord. Chem. II 4, 635, and references therein.Google Scholar
  8. 8.
    C. L. Hill (2003). Comp. Coord. Chem. II 4, 679.CrossRefGoogle Scholar
  9. 9.
    Polyoxometalate Molecular Science, J. J. Borrás-Almenar, E. Coronado, A. Müller, and M. T. Pope (eds.) (Kluwer: Dordrecht, 2004).Google Scholar
  10. 10.
    (a) W. H. Knoth, P. J. Domaille, and R. L. Harlow (1986). Inorg. Chem. 25, 1577. (b) U. Lee, H.-C. Joo, K.-M. Park, and T. Ozeki (2003). Acta Cryst. C59, m152. (c) T. M. Anderson, W. A. Neiwert, M. L. Kirk, P. M. B. Piccoli, A. J. Schultz, T. F. Koetzle, D. G. Musaev, K. Morokuma, R. Cao, and C. L. Hill (2004). Science 306, 2074.Google Scholar
  11. 11.
    (a) C. M. Tourné, G. F. Tourné, and F. Zonnevijlle (1991). Dalton Trans. 143. (b) S. J. Angus-Dunne, R. C. Burns, D. C. Craig, and G. A. Lawrance (1994). Chem. Commun. 523. (c) T. M. Anderson, R. Cao, E. Slonkina, B. Hedman, K. O. Hodgson, K. I. Hardcastle, W. A. Neiwert, S. Wu, M. L. Kirk, S. Knottenbelt, Ezra C. Depperman, B. Keita, L. Nadjo, D. G. Musaev, K. Morokuma, and C. L. Hill (2005). J. Am. Chem. Soc. 127, 11948.Google Scholar
  12. 12.
    (a) L.-H. Bi, M. Reicke, U. Kortz, B. Keita, L. Nadjo, and R. J. Clark (2004). Inorg. Chem. 43, 3915. (b) L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, and H. Borrmann (2004). Inorg. Chem. 43, 8367. (c) L.-H. Bi, U. Kortz, B. Keita, L. Nadjo, and L. Daniels (2005). Eur. J. Inorg. Chem. 3034.Google Scholar
  13. 13.
    (a) C. Y. Rong and M. T. Pope (1992). J. Am. Chem. Soc. 114, 2932. (b) K. Filipek (1995). Inorg. Chim. Acta 231, 237. (c) T. Naota, H. Takaya, and S.-I. Murahashi (1998). Chem. Rev. 98, 2599. (d) M. Bonchio, G. Scorrano, P. Toniolo, A. Proust, V. Artero, and V. Conte (2002). Adv. Synth. Catal. 344, 841. (e) K. Yamaguchi and N. Mizuno (2002). New J. Chem. 26, 972. (f) M. Sadakane and M. Higashijima (2003). Dalton Trans. 659. (g) M. Sadakane, D. Tsukuma, M. H. Dickman, U. Kortz, W. Ueda, and M. Higashijima (2006). Dalton Trans. 4271. (h) M. Sadakane, D. Tsukuma, M. H. Dickman, B. S. Bassil, U. Kortz, M. Capron, and W. Ueda (2007). Dalton Trans. 2833.Google Scholar
  14. 14.
    (a) R. Neumann and M. Dahan (1997). Nature 388, 353. (b) R. Neumann and M. Dahan (1998). J. Am. Chem. Soc. 120, 11969. (c) W. Adam, P. L. Alsters, R. Neumann, C. R. Saha-Möller, D. Seebach, A. K. Beck, and R. Zhang (2003). J. Org. Chem. 68, 8222. (d) C.-X. Yin and R. G. Finke (2005). Inorg. Chem. 44, 4175.Google Scholar
  15. 15.
    (a) W. J. Randall, T. J. R. Weakley, and R. G. Finke (1993). Inorg. Chem. 32, 1068. (b) R. Neumann, and A. M. Khenkin (1995). Inorg. Chem. 34, 5753.Google Scholar
  16. 16.
    (a) G. Süss-Fink, L. Plasseraud, V. Ferrand, and H. Stoeckli-Evans (1997). Chem. Commun. 1657. (b) V. Artero, A. Proust, P. Herson, R. Thouvenot, and P. Gouzerh (2000). Chem. Commun. 883. (c) V. Artero, A. Proust, P. Herson, and P. Gouzerh (2001). Chem. Eur. J. 7, 3901. (d) D. Laurencin, E. Garcia Fidalgo, R. Villanneau, F. Villain, P. Herson, J. Pacifico, H. Stoeckli-Evans, M. Bénard, M.-M. Rohmer, G. Süss-Fink, and A. Proust (2004). Chem. Eur. J. 10, 208. (e) V. Artero, A. Proust, P. Herson, F. Villain, C. C. D. Moulin, and P. Gouzerh (2003). J. Am. Soc. Chem. 125, 11156. (f) V. Artero, D. Laurencin, R. Villanneau, R. Thouvenot, P. Herson, P. Gouzerh, and A. Proust (2005). Inorg. Chem. 44, 2826.Google Scholar
  17. 17.
    (a) L.-H. Bi, F. Hussain, U. Kortz, M. Sadakane, and M. H. Dickman (2004). Chem. Commun. 1420. (b) L.-H. Bi, U. Kortz, B. Keita, and L. Nadjo (2004). Dalton Trans. 3184.Google Scholar
  18. 18.
    L.-H. Bi, M. H. Dickman, U. Kortz, and I. Dix (2005). Chem. Commun. 3962.Google Scholar
  19. 19.
    (a) L.-H. Bi, U. Kortz, M. H. Dickman, B. Keita, and L. Nadjo (2005). Inorg. Chem. 44, 7485. (b) L.-H. Bi, E. V. Chubarova, N. H. Nsouli, M. H. Dickman, U. Kortz, B. Keita, and L. Nadjo (2006). Inorg. Chem. 45, 8575. (c) S. S. Mal, N. H. Nsouli, and M. H. Dickman, and U. Kortz (2007). Dalton Trans. 2627.Google Scholar
  20. 20.
    A. Müller, H. Reuter, and S. Dillinger (1995). Angew. Chem. 107, 2505; Angew. Chem. Int. Ed. 34, 2328.Google Scholar
  21. 21.
    P. G. Antonov, Y. N. Kukushkin, V. I. Konnov, Y. P. Kostokov (1980). Koord. Khim. 6, 1585.Google Scholar
  22. 22.
    G. M. Sheldrick, SADABS (University of Göttingen, Germany, 1996).Google Scholar
  23. 23.
    S. G. Vulfson, Molecular Magnetochemistry. (Gordon and Breach Science, Amsterdam, 1998), p 241.Google Scholar
  24. 24.
    (a) R. Raveendran and S. Pal (2006). Inorg. Chim. Acta 359, 3212. (b) T. K. Paine, T. Weyhermüller, E. Bill, E. Bothe, and P. Chaudhuri (2003). Eur. J. Inorg. Chem. 4299.Google Scholar
  25. 25.
    (a) U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, J. van Tol, and B. S. Bassil (2004). Inorg. Chem. 43, 144. (b) U. Kortz, S. Nellutla, A. C. Stowe, N. S. Dalal, U. Rauwald, W. Danquah, and D. Ravot (2004). Inorg. Chem. 43, 2308. (c) B. Cage, A. K. Hassan, L. Pardi, J. Krzystek, L. C. Brunel, and N. S. Dalal (1997). J. Magn. Reson. 124, 495. (d) A. K. Hassan, L. A. Pardi, J. Krzystek, A. Sienkiewicz, P. Goy, M. Rohrer, and L. C. Brunel (2000). J. Magn. Reson. 142, 300. (e) J. van Tol, L. C. Brunel, and R. J. Wylder (2005). Rev. Sci. Inst. 76, 074101.Google Scholar
  26. 26.
    A. M. Khenkin, L. J. W. Shimon, and R. Neumann (2003). Inorg. Chem. 42, 3331.CrossRefGoogle Scholar
  27. 27.
    G. Süss-Fink, L. Plasseraud, V. Ferrand, S. Stanislas, A. Neels, H. Stoeckli-Evans, M. Henry, G. Laurenczy, and R. Roulet (1998). Polyhedron, 17, 2817.CrossRefGoogle Scholar
  28. 28.
    K. Nomiya, Y. Kasahara, Y. Sado, and A. Shinohara (2007). Inorg. Chim. Acta, 360, 2313.CrossRefGoogle Scholar
  29. 29.
    I. D. Brown, and D. Altermatt (1985). Acta Cryst. B41, 244.Google Scholar
  30. 30.
    M. Demeter, M. Neumann, and W. Reichelt (2000). Surface Science 41, 454.Google Scholar
  31. 31.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin–Elmer Corporation, Eden Prairie USA, 1992).Google Scholar
  32. 32.
    R. L. Carlin (ed.), Magnetochemistry (Springer, Berlin, 1986).Google Scholar
  33. 33.
    L.-H. Bi, U. Kortz, M. H. Dickman, S. Nellutla, N. S. Dalal, B. Keita, L. Nadjo, M. Prinz, and M. Neumann (2006). J. Clust. Sci. 17, 143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Li-Hua Bi
    • 1
    • 2
  • Sib Sankar Mal
    • 1
  • Nadeen H. Nsouli
    • 1
  • Michael H. Dickman
    • 1
  • Ulrich Kortz
    • 1
  • Saritha Nellutla
    • 3
    • 4
  • Naresh S. Dalal
    • 3
    • 4
  • Manuel Prinz
    • 5
  • Georg Hofmann
    • 5
  • Manfred Neumann
    • 5
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany
  2. 2.College of ChemistryJilin UniversityChangchunChina
  3. 3.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  4. 4.National High Magnetic Field Laboratory and Center for Interdisciplinary Magnetic ResonanceTallahasseeUSA
  5. 5.Department of PhysicsUniversity of OsnabrückOsnabruckGermany

Personalised recommendations