The Electronic Structure and Bonding of the First p-Block Paddlewheel Complex, Bi2(trifluoroacetate)4, and Comparison to d-Block Transition Metal Paddlewheel Complexes: A Photoelectron and Density Functional Theory Study

Original Paper

Abstract

The photoelectron spectrum and a density functional computational analysis of the first p-block paddlewheel complex, Bi2(tfa)4, where tfa = (O2CCF3), are reported. The photoelectron spectrum of Bi2(tfa)4 contains an ionization band between the region of metal-based ionizations and the region of overlapping ligand ionizations that is not seen in the photoelectron spectra of d-block paddlewheel complexes. This additional ionization arises from an a1g symmetry combination of the tfa ligand orbitals that is directed for σ bonding with the metals, and the unusual energy of this ionization follows from the different interaction of this orbital with the valence s and p orbitals of Bi compared to the valence d orbitals of transition metals. There is significant mixing between the Bi–Bi σ bond and this a1g M–L σ orbital. This observation led to a re-examination of the ionization differences between Mo2(tfa)4 and W2(tfa)4, where the metal–metal σ and π ionizations are overlapping for the Mo2 molecule but a separate and sharp σ ionization is observed for the W2 molecule. The coalescing of the σ and π bond ionizations of Mo2(tfa)4 is due to greater ligand orbital character in the Mo–Mo σ bond (∼7%) versus the W–W σ bond (∼1%).

Keywords

Metal–metal bonds Photoelectron spectroscopy Paddlewheel molecules Bismuth complexes 

References

  1. 1.
    F. A. Cotton, C. A. Murillo, and R. A. Walton, Multiple Bonds Between Metal Atoms, 3rd edn. (Springer Science and Business Media, Inc., New York, 2005).Google Scholar
  2. 2.
    T. A. Budzichowski, M. H. Chisholm, D. B. Tiedtke, et al. (1998). Polyhedron 17, 705.CrossRefGoogle Scholar
  3. 3.
    M. H. Chisholm, D. L. Clark, J. C. Huffman, et al. (1987). J. Am. Chem. Soc. 109, 6796.CrossRefGoogle Scholar
  4. 4.
    F. A. Cotton, E. V. Dikarev, and X. Feng (1995). Inorg. Chim. Acta 237, 19.CrossRefGoogle Scholar
  5. 5.
    F. A. Cotton, J. C. Durivage, N. E. Gruhn, et al. (2006). J. Phys. Chem. B 110, 19793.CrossRefGoogle Scholar
  6. 6.
    F. A. Cotton, N. E. Gruhn, J. Gu, et al. (2002). Science (Washington, DC, United States) 298, 1971.Google Scholar
  7. 7.
    F. A. Cotton, J. L. Hubbard, D. L. Lichtenberger, et al. (1982). J. Am. Chem. Soc. 104, 679.CrossRefGoogle Scholar
  8. 8.
    F. A. Cotton, and R. A. Walton, Multiple Bonds Between Metal Atoms (John Wiley & Sons, New York, 1982).Google Scholar
  9. 9.
    D. L. Lichtenberger (1983). ACS Symp. Ser. 211, 221.CrossRefGoogle Scholar
  10. 10.
    D. L. Lichtenberger and R. L. Johnston, in J. P. Fackler Jr. (ed.), Metal-Metal Bonds and Clusters in Chemistry and Catalysis [Proc.Ind.-Univ. Coop. Chem. Program], 7th edn. (Plenum, New York, 1990), pp. 275–298.Google Scholar
  11. 11.
    D. L. Lichtenberger, M. A. Lynn, and M. H. Chisholm (1999). J. Am. Chem. Soc. 121, 12167.CrossRefGoogle Scholar
  12. 12.
    D. L. Lichtenberger, J. R. Pollard, M. A. Lynn, et al. (2000). J. Am. Chem. Soc. 122, 3182.CrossRefGoogle Scholar
  13. 13.
    D. L. Lichtenberger, C. D. Ray, F. Stepniak, et al. (1992). J. Am. Chem. Soc. 114, 10492.CrossRefGoogle Scholar
  14. 14.
    G. M. Bancroft, E. Pellach, A.P. Sattelberger, et al. (1982). J. Chem. Soc., Chem. Commun. 752.Google Scholar
  15. 15.
    J. Brennan, G. Cooper, J. C. Green, et al. (1995). J. Electron. Spectrosc. Relat. Phenom. 73, 157.CrossRefGoogle Scholar
  16. 16.
    F. A. Cotton, J. P. Donahue, D. L. Lichtenberger, et al. (2005). J. Am. Chem. Soc. 127, 10808.CrossRefGoogle Scholar
  17. 17.
    F. A. Cotton, J. P. Donahue, N. E. Gruhn, et al. (2006). Inorg. Chem. 45, 201.CrossRefGoogle Scholar
  18. 18.
    J. G. Kristofzski (1988). Diss. Abstr. Int. B 49, 1691.Google Scholar
  19. 19.
    E. V. Dikarev, and B. Li (2004). Inorg. Chem. 43, 3461.CrossRefGoogle Scholar
  20. 20.
    B. M. Choudary, S. Chidara, and C. V. R. Sekhar (2002). Synlett 2002, 1694.CrossRefGoogle Scholar
  21. 21.
    A. Yanagisawa, M. Morodome, H. Nakashima, et al. (1997). Synlett 1997, 1309.CrossRefGoogle Scholar
  22. 22.
    Y. Nagano, A. Orita, and J. Otera (2002). Tetrahedron 58, 8211.CrossRefGoogle Scholar
  23. 23.
    J. S. Yadav, B. V. S. Reddy, and G. Satheesh (2003). Tetrahedron Lett. 44, 6501.CrossRefGoogle Scholar
  24. 24.
    J. S. Yadav, B. V.S. Reddy, and T. Swamy (2003). Tetrahedron Lett. 44, 4861.CrossRefGoogle Scholar
  25. 25.
    Y. Torisawa, T. Nishi, and J. Minamikawa (2002). Bioorg. Med. Chem. 10, 2583.CrossRefGoogle Scholar
  26. 26.
    K. E. Peterson, R. C. Smith, and R. S. Mohan (2003). Tetrahedron Lett. 44, 7723.CrossRefGoogle Scholar
  27. 27.
    J. R. Desmurs, M. Labrouillere, C. LeRoux, et al. (1997). Tetrahedron Lett. 38, 8871.CrossRefGoogle Scholar
  28. 28.
    D. M. Cui, M. Kawamura, S. Shimada, et al. (2003). Tetrahedron Lett. 44, 4007.CrossRefGoogle Scholar
  29. 29.
    S. Repichet, C. Le Roux, J. Dubac, et al. (1998). Eur. J. Org. Chem. 2743.Google Scholar
  30. 30.
    B. Garrigues, F. Gonzaga, H. Robert, et al. (1997). J. Org. Chem. 62, 4880.CrossRefGoogle Scholar
  31. 31.
    B. Garrigues, and A. Oussaid (1999). J. Organomet. Chem. 585, 253.CrossRefGoogle Scholar
  32. 32.
    H. Dhimane, S. Meunier, C. Vanucci-Bacque, et al. (2002). Tetrahedron Lett. 43, 1645.CrossRefGoogle Scholar
  33. 33.
    H. Laurent-Robert, B. Garrigues, and J. Dubac (2000). Synlett 2000, 1160.CrossRefGoogle Scholar
  34. 34.
    H. Laurent-Robert, C. Le Roux, and J. Dubac (1998). Synlett 1998, 1138.CrossRefGoogle Scholar
  35. 35.
    R. Varala, M. M. Alam, and S. R. Adapa (2003). Synlett 2003, 67.Google Scholar
  36. 36.
    C. Le Roux, and J. Dubac (2002). Synlett 2002, 181.CrossRefGoogle Scholar
  37. 37.
    F. A. Cotton, and J. G. Norman Jr. (1972). J. Coord. Chem. 1, 161.CrossRefGoogle Scholar
  38. 38.
    D. J. Santure, and A. P. Sattelberger (1989). Inorg. Synth. 26, 219.Google Scholar
  39. 39.
    D. L. Lichtenberger, G. E. Kellogg, J. G. Kristofzski, et al. (1986). Rev. Sci. Instrum. 57, 2366.CrossRefGoogle Scholar
  40. 40.
    N. E. Gruhn, D. A. da Silva, T. G. Bill, et al. (2002). J. Am. Chem. Soc. 124, 7918.CrossRefGoogle Scholar
  41. 41.
    X. Amashukeli, N. E. Gruhn, D. L. Lichtenberger, et al. (2004). J. Am. Chem. Soc. 126, 15566.CrossRefGoogle Scholar
  42. 42.
    X. Amashukeli, J. R. Winkler, H. B. Gray, et al. (2002). J. Phys. Chem. A 106, 7593.CrossRefGoogle Scholar
  43. 43.
    D. L. Lichtenberger, and A. S. Copenhaver (1990). J. Electron. Spectrosc. Relat. Phenom. 50, 335.CrossRefGoogle Scholar
  44. 44.
    G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, et al. (2001). J. Comp. Chem. 22, 931.CrossRefGoogle Scholar
  45. 45.
    C. F. Guerra, J. G. Snijders, G. Te Velde, et al. (1998). Theor. Chem. Acc. 99, 391.CrossRefGoogle Scholar
  46. 46.
    ADF2006.01b, SCM, Theoretical Chemistry (Vrije Universiteit, Amsterdam, The Netherlands, 2006). http://www.scm.com .
  47. 47.
    A. D. Becke (1988). Phys. Rev. A: At. Mol. Opt. Phys. 38, 3098.Google Scholar
  48. 48.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1994). J. Chem. Phys. 101, 9783.CrossRefGoogle Scholar
  49. 49.
    E. van Lenthe, E. J. Baerends, and J. G. Snijders (1993). J. Chem. Phys. 99, 4597.CrossRefGoogle Scholar
  50. 50.
    E. van Lenthe, J. G. Snijders, and E. J. Baerends (1996). J. Chem. Phys. 105, 6505.CrossRefGoogle Scholar
  51. 51.
    E. van Lenthe, R. Van Leeuwen, E. J. Baerends, et al. (1996). Int. J. Quantum Chem. 57, 281.CrossRefGoogle Scholar
  52. 52.
    E. van Lenthe, A. Ehlers, and E. Baerends (1999). J. Chem. Phys. 110, 8943.CrossRefGoogle Scholar
  53. 53.
    MOLEKEL 4.3, P. Flükinger, H. P. Luthi, S. Portmann, et al, Molekel 4.1 (Swiss Center for Scientific Computing, Manno, Switzerland, 2000–2002).Google Scholar
  54. 54.
    K. Senthilkumar, F. C. Grozema, F. M. Bickelhaupt, et al. (2003). J. Chem. Phys. 119, 9809.CrossRefGoogle Scholar
  55. 55.
    K. Senthilkumar, F. C. Grozema, C. F. Guerra, et al. (2003). J. Am. Chem. Soc. 125, 13658.CrossRefGoogle Scholar
  56. 56.
    F. A. Cotton, G. Wilkinson, M. Bochmann, et al. Advanced Inorganic Chemistry, 6th edn. (John Wiley & Sons, Inc., New York, 1998).Google Scholar
  57. 57.
    D. Dai, M. Whangbo, A. Ugrinov, et al. (2005). J. Phys. Chem. A 109, 1675.Google Scholar
  58. 58.
    C. H. Blevins II (1984). Dissert. Abstr. Intl. 45, 1186.Google Scholar
  59. 59.
    A. W. Coleman, J. C. Green, A. J. Hayes, et al. (1979). J. Chem. Soc., Dalton Trans. 1057.Google Scholar
  60. 60.
    D. L. Lichtenberger, and J. G. Kristofzski (1987). J. Am. Chem. Soc. 109, 3458.CrossRefGoogle Scholar
  61. 61.
    J. J. Yeh, and I. Lindau (1985). Atomic Data and Nuclear Data Tables 32, 1.CrossRefGoogle Scholar
  62. 62.
    D. L. Lichtenberger, and C. H. Blevins II (1984). J. Am. Chem. Soc. 106, 1636.CrossRefGoogle Scholar
  63. 63.
    A. B. Trofimov, H. Koppel, and J. Schirmer (1998). J. Chem. Phys. 109, 1025.CrossRefGoogle Scholar
  64. 64.
    B. Li, H. Zhang, L. Huynh, et al. (2007). Inorg. Chem. 46, 9155.CrossRefGoogle Scholar
  65. 65.
    D. J. Santure, K. W. McLaughlin, J. C. Huffman, et al. (1983). Inorg. Chem. 22, 1877.CrossRefGoogle Scholar
  66. 66.
    I. Mayer (1983). Chem. Phys. Lett. 97, 270.CrossRefGoogle Scholar
  67. 67.
    P. Cucka, and C. S. Barrett (1962). Acta Cryst. 15, 865.CrossRefGoogle Scholar
  68. 68.
    J. E. Huheey, E. A. Keiter, and T. Keith, Inorganic Chemistry: Principles of Structure and Reactivity (HarperCollins College Publishers, New York, 1993).Google Scholar
  69. 69.
    L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions: Supplement 1956–1959 (Chemical Society (London) Special Publication No. 18). (The Chemical Society, London, 1965).Google Scholar
  70. 70.
    L. C. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry, 3rd edn. (Cornell Univ. Press, Ithaca, NY, 1960).Google Scholar
  71. 71.
    C.R. Landis, and F. Weinhold (2006). J. Am. Chem. Soc. 128, 7335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryThe University of ArizonaTucsonUSA
  2. 2.Department of ChemistryThe University at Albany, SUNYAlbanyUSA

Personalised recommendations