Journal of Cluster Science

, Volume 18, Issue 3, pp 729–740 | Cite as

Hypothetical Hypercloso Octahedral M4N2 Clusters: A New Mode of Dinitrogen Coordination?

  • Fatima Zohra Trodi
  • Guillaume Lucas
  • Mustapha Bencharif
  • Jean-François Halet
  • Samia Kahlal
  • Jean-Yves Saillard
Original Paper


Density functional theory (DFT) calculations carried out on a series of [M4(CO)12N2]2+ and M4(CO)12N2 (M=Fe, Ru, Os) predict that the M4N2 square bipyramidal (octahedral) architecture should be stable for the particular electron count of 6 skeletal electron pairs (or 60 metal valence electrons). This octahedral architecture is electron-deficient with respect to the Wade-Mingos rules and exhibits a through-cage N–N bond of order one. Thus, these hypothetical clusters present a new coordination mode of dinitrogen.


theoretical investigation transition-metal clusters hypercloso clusters electron counting 



This work was supported by a French-Algerian grant (CMEP 02MDU 552). The stay of F. Z. Trodi in Rennes was financed by an Algerian grant (PNE). Computing facilities were provided by the Institut de Développement et de Ressources en Informatique Scientifique (IDRIS-CNRS, Orsay) and the Centre Informatique National de l’Enseignement Supérieur (CINES, Montpellier).


  1. 1.
    (a) K. Wade, in B. F. G. Jonhson (ed.), Transition Metal Clusters (Wiley and Sons, Chichester, 1980), pp. 193–264. (b) D. M. P. Mingos, D. J. Wales, Introduction to Cluster Chemistry (Prentice-Hall, Englewood Cliffs, 1990)Google Scholar
  2. 2.
    T. A. Albright, J. K. Burdett and M. H. Whangbo (1985). Orbital Interactions in Chemistry, John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    (a) H. G. Ang, C. M. Hay, B. F. G. Johnson, J. Lewis, P. R. Raithby and A. J. Whitton (1987). J. Organomet. Chem. 330, C5. (b) C. M. Hay, B. F. G. Johnson, J. Lewis, P. R. Raithby and A. J. Whitton (1988). J. Chem. Soc. Dalton Trans. 2091Google Scholar
  4. 4.
    (a) H. Vahrenkamp and D. Wolters (1982). Organometallics 1, 874. (b) T. Jaeger, S. Aime and H. Vahrenkamp (1986). Organometallics 5, 245. (c) H. Krautscheid, E. Matern, G. Fritz and J. Pikies (2000). Z. Anorg. All. Chem. 626, 1087Google Scholar
  5. 5.
    (a) J.-F. Halet, R. Hoffmann and J.-Y. Saillard (1985). Inorg. Chem. 25, 1695. (b) J.-F. Halet and J.-Y. Saillard (1987). New J. Chem. 11, 315. (c) S. Kahlal, J.-F. Halet and J.-Y. Saillard (1991). New. J. Chem. 15, 843. (d) J.-F. Halet (1995). Coord. Chem. Rev. 143, 637. (e) S. Kahlal, K. A. Udachin, L. Scoles, A. J. Carty and J.-Y. Saillard (2000). Organometallics, 19, 2251Google Scholar
  6. 6.
    S. Kahlal, J. -F. Halet, J. -Y. Saillard (1991). Inorg. Chem. 30, 2567CrossRefGoogle Scholar
  7. 7.
    J. Elmsley, The Elements (Clarendon Press, Oxford, 1989)Google Scholar
  8. 8.
    E. Sappa, A. M. Manotti Lanfredi, G. Predieri, A. Tiripicchio, A. J. Carty (1985). J. Organomet. Chem. 288, 365CrossRefGoogle Scholar
  9. 9.
    N. S. Lokbani-Azzouz, A. Boucekkine, J. -F. Halet, J. -Y. Saillard (2003). J. Cluster Sci. 14, 49CrossRefGoogle Scholar
  10. 10.
    W. Tremel, R. Hoffmann, M. Kertesz (1989). J. Am. Chem. Soc. 111, 2030CrossRefGoogle Scholar
  11. 11.
    B. Le Guennic, H. Jiao, S. Kahlal, J. -Y. Saillard, J. -F. Halet, S. Ghosh, M. Shang, A. M. Beatty, A. Rheingold, T. P. Fehlner (2004). J. Am. Chem. Soc. 126, 3203CrossRefGoogle Scholar
  12. 12.
    N. Guechtouli, G. Lucas, A. Boucekkine, J. -F. Halet, S. Kahlal, N. S. Lokbani-Azzouz, H. Meghezzi, J. -Y. Saillard (2005). C. R. Chimie 8, 1863Google Scholar
  13. 13.
    ADF, version 2006.01, Theoretical Chemistry (Vrije Universiteit: Amsterdam, The Netherlands, SCM)Google Scholar
  14. 14.
    (a) E. J. Baerends, D. E. Ellis and P. Ros (1973). Chem. Phys. 2, 41. (b) G. te Velde and E. J. Baerends (1992). J. Comput. Phys. 99, 84. (c) C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends (1998). Theo. Chim. Acc. 99, 391. (d) F. M. Bickelhaupt and E. J. Baerends (2000). Rev. Comput. Chem. 15, 1. (e) G. te Velde, F. M. Bickelhaupt, C. Fonseca Guerra, S. J. A. van Gisbergen, E. J. Baerends, J. G. Snijders and T. J. Ziegler (2001). Comput. Chem. 22, 931Google Scholar
  15. 15.
    S. D. Vosko, L. Wilk, M. Nusair (1990). Can. J. Chem. 58, 1200Google Scholar
  16. 16.
    (a) A. D. Becke (1986). Chem. Phys. 84, 4524. (b) A. D. Becke (1988). Phys. Rev. A 38, 3098Google Scholar
  17. 17.
    (a) J. P. Perdew (1986). Phys. Rev. B, 33, 8822. (b) J. P. Perdew (1986). Phys. Rev. B 34, 7406Google Scholar
  18. 18.
    E. van Lenthe, A. W. Ehlers, E. J. Baerends (1999). J. Chem. Phys. 110, 8943CrossRefGoogle Scholar
  19. 19.
    L.Verluis, T. Ziegler (1988). J. Chem. Phys. 88, 322CrossRefGoogle Scholar
  20. 20.
    (a) L. Fan, T. J. Ziegler (1992). Chem. Phys. 96, 9005. (b) L. Fan and T. Ziegler (1992). J. Phys. Chem. 96, 6937Google Scholar
  21. 21.
    P. Flükiger, H. P. Lüthi, S. Portmann and J. Weber (2000–2001). Swiss Center for Scientific Computing (CSCS), SwitzerlandGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fatima Zohra Trodi
    • 1
    • 2
  • Guillaume Lucas
    • 2
    • 3
  • Mustapha Bencharif
    • 1
  • Jean-François Halet
    • 2
  • Samia Kahlal
    • 2
  • Jean-Yves Saillard
    • 2
  1. 1.Faculté des Sciences Exactes, Département de ChimieUniversité Mentouri ConstantineConstantineAlgeria
  2. 2.Sciences Chimiques de RennesUMR 6226 CNRS-Université de Rennes 1Rennes CedexFrance
  3. 3.Paul Scherrer InstituteEcole Polytechnique Fédérale de LausanneVilligen-PSISwitzerland

Personalised recommendations