Advertisement

Journal of Cluster Science

, Volume 17, Issue 2, pp 389–425 | Cite as

Influence of the Lanthanide Ion and Solution Conditions on Formation of Lanthanide Wells–Dawson Polyoxotungstates

  • Cheng Zhang
  • Laurence Bensaid
  • Donna McGregor
  • Xikui Fang
  • Robertha C. Howell
  • Benjamin Burton-Pye
  • Qunhui Luo
  • Louis Todaro
  • Lynn C. FrancesconiEmail author
Article

Abstract

Lanthanide complexes of polyoxometalates, including the α2-P2W17O61 10− ligand, have been pioneered by Michael T. Pope, to whom this paper is dedicated. Examination of the solid-state and solution behavior of lanthanide complexes of the α2-P2W17O61 10− ligand are reported here to identify trends that will facilitate rational synthesis of hybrid organic lanthanide polyoxometalate complexes. Therefore, combining our data with that obtained by Pope and others a number of trends come into view. It is clear that there are two structural types for the 1:1 or 2:2 [Ln(H2O)X2-P2W17O61)]2 14− species. The early lanthanides show a “cap to cap” structure that allows the Ln ion to be 9 coordinate and accommodates the longer bond lengths. The mid-late lanthanides show a “cap to belt” structure that allows the lanthanides to be 8 coordinate; this structural type is appropriate for the shorter bond lengths of the later lanthanides. The 1:1⇌1:2 equilibrium, that was observed by Pope for the Ce(III) analog is prevalent for the early- mid lanthanides. This equilibrium is slightly dependent on pH; however, cations have a major influence on this equilibrium. Larger, poorly hydrated cations appear to favor the 1:2 species for the early to mid lanthanides. Cations do not appear to influence the equilibrium for the later lanthanides; for all counterions, the 1:1 species was stable with no trace of the 1:2 species. Stability constants, K1 and K2, for the early to mid lanthanides were measured in this study by a competitive method and compared well with other published stability constant determinations. We suggest that the stability constants are not only dependent on the strength of interaction of the Ln with the α2-P2W17O61 10− ligand, but are also significantly influenced by the medium. The medium may bias the equilibria of the early-mid lanthanides and later lanthanides. The log K1/log K2 ratios are very close, suggesting that it is difficult to separate the 1:1 and 1:2 Ln: α2-P2W17O61 10− species.

Keywords

Polyoxometalate lanthanide α2-P2W17O6110− 

Notes

Acknowledgments

We acknowledge the following sources of support for this research: NSF Grant No. CHE 0414218, NIH-S06 GM60654 (SCORE), the Faculty Research Award Program of the City University of New York, Eugene Lang Faculty Development Award, (LCF), the Gertrude Elion Fellowship and Rose Kefar Rose Dissertation Award (CZ); and NSF Grant MRI0116244 for the purchase of an X-ray Diffractometer (LCF). Research Infrastructure at Hunter College is partially supported by NIH-Research Centers in Minority Institutions Grant RR03037–08.

Supplementary material

10876_2006_66_MOESM1_ESM.pdf (1.7 mb)
Supplementary material

References

  1. 1.
    Hill C. (1998) Chem. Rev. 98: 1CrossRefPubMedGoogle Scholar
  2. 2.
    Mizuno N., Misono M. (1998) Chem. Rev. 98: 199CrossRefPubMedGoogle Scholar
  3. 3.
    Belai N., Sadakane M., Pope M. T. (2001) J. Am. Chem. Soc. 123: 2087CrossRefPubMedGoogle Scholar
  4. 4.
    A. V. Besserguenev, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2582.Google Scholar
  5. 5.
    Creaser I., Heckel M. C., Neitz R. J., Pope M. T. (1993) Inorg. Chem. 32: 1573CrossRefGoogle Scholar
  6. 6.
    Dickman M. H., Gama G. J., Kim K.-C., Pope M. T. (1996) J. Cluster Sci. 7: 567CrossRefGoogle Scholar
  7. 7.
    Gaunt A. J., May I., Collision K., Holman K. T., Pope M. T. (2003) J. Mol. Struct. 656: 101CrossRefGoogle Scholar
  8. 8.
    Kim K.-C., Pope M. T. (1999) J. Amer. Chem. Soc. 121:8512CrossRefGoogle Scholar
  9. 9.
    K.-C. Kim and M. T. Pope (2001). J. Chem. Soc. Dalton Trans. 986Google Scholar
  10. 10.
    Pope M. T., Wei X., Wassermann K., Dickman M. H. (1998) C.R. Acad. Sci. Paris 1:297Google Scholar
  11. 11.
    M. Sadakane, A. Ostuni, and M. T. Pope (2002). J. Chem. Soc. Dalton Trans. 63.Google Scholar
  12. 12.
    Termes S. C., Pope M. T. (1978) Transition Met. Chem. 3: 103CrossRefGoogle Scholar
  13. 13.
    Wassermann K., Pope M. T. (2001) Inorg. Chem. 40: 2763CrossRefPubMedGoogle Scholar
  14. 14.
    Wassermann K., Dickman M. H., Pope M. T. (1997) Angew. Chem. Int. Ed. Engl. 36: 1445CrossRefGoogle Scholar
  15. 15.
    Saito A., Choppin G. R. (1991) Inorg. Chem. 30: 4563CrossRefGoogle Scholar
  16. 16.
    Saito A., Choppin G. R. (1995) Radiochimica Acta 68: 221Google Scholar
  17. 17.
    Saito A., Tomari H., Choppin G. R. (1997) Inorganica Chimica Acta 258: 145CrossRefGoogle Scholar
  18. 18.
    Milyukova M. S., Varezhkina N. S., Myasoedov B. F. (1990) Soviet Radiochem., Engl. Trans 32:361Google Scholar
  19. 19.
    Chartier D., Donnet L., Adnet J. M. (1998) Radiochim. Acta 83:129Google Scholar
  20. 20.
    Milyukova M. S., Litvina M. N., Myasoedov B. P. (1983) Radiokhimiya 25: 706Google Scholar
  21. 21.
    Bion L., Moisy P., Madic C. (1995) Radiochimica Acta 69: 251Google Scholar
  22. 22.
    L. Bion, P. Moisy, F. Vaufrey, S. Meot-Reymond, and E. Simoni, et al. (1997). Radiochim. Acta 78.Google Scholar
  23. 23.
    Shilov V. P. (1980) Radiokhimiya 22: 727Google Scholar
  24. 24.
    Yusov A. B., Shilov V. P. (1999) Radiochemistry 41: 1Google Scholar
  25. 25.
    Gaunt A. J., May I., Helliwell M., Richardson S. (2002) J. Amer. Chem. Soc. 124: 13350CrossRefGoogle Scholar
  26. 26.
    Williams C. W., Blaudeau J.-P., Sullivan J. C., Antonio M. R., and Bursten B. et al. (2001) J. Am. Chem. Soc.; (Communication) 123: 4346CrossRefGoogle Scholar
  27. 27.
    Chiang M.-H., Williams C. W., Soderholm L., Antonio M. R. (2003) Eur. J. Inorg. Chem. 2003: 2663CrossRefGoogle Scholar
  28. 28.
    Duval P. B., Burns C. J., Clark D. L., Morris D. E., and Scott B. L. et al. (2001) Angew. Chem. Int. Ed. 40: 3357CrossRefGoogle Scholar
  29. 29.
    Okun N. M., Ritorto M. D., Anderson T. M., Apkarian R. P., Hill C. L. (2004) Chem. Mater. 16: 2551CrossRefGoogle Scholar
  30. 30.
    Liu S., Kurth D. G., Bredenkotter B., Volkmer D. (2002) J. Am. Chem. Soc. 124: 12279CrossRefPubMedGoogle Scholar
  31. 31.
    Liu S., Kurth D. G., Mohwald H., Volkmer D. (2002) Adv. Mater. 14: 225CrossRefGoogle Scholar
  32. 32.
    Sadakane M., Dickman M. H., Pope M. T. (2000) Angew. Chem. Int. Ed. 39: 2914CrossRefGoogle Scholar
  33. 33.
    P. Mialane, L. Lisnard, A. Mallard, J. Marrot, and E. Antic-Fidancev, et al. (2003) Inorg. Chem. 42, 2102Google Scholar
  34. 34.
    Muller A., Krickemeyer E., Bogge H., Schmidtmann M., Peters F. (1998) Chem. Int. Ed. 37: 3360Google Scholar
  35. 35.
    Muller A., Sarkar S., Shah S. Q. N., Bogge H., Schmidtmann M. et al. (1999) Angew. Chem. Int. Ed. 38: 3238CrossRefGoogle Scholar
  36. 36.
    Sadakane M., Dickman M. H., Pope M. T. (2001) Inorg. Chem. 40: 2715CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang C., Howell R. C., Scotland K. B., Perez F. G., Todaro L. et al. (2004) Inorg. Chem. 43:7691CrossRefPubMedGoogle Scholar
  38. 38.
    Bartis J., Dankova M., Blumenstein M., Francesconi L. C. (1997) J. Alloys Compunds 249: 56CrossRefGoogle Scholar
  39. 39.
    J. Bartis, S. Sukal, M. Dankova, E. Kraft, and R. Kronzon, et al. (1997). J. Chem. Soc., Dalton Trans 1937Google Scholar
  40. 40.
    Bartis J., Dankova M., Lessmann J. J., Luo Q.-H., Horrocks W. D. Jr. et al. (1999) Inorg. Chem. 38:1042CrossRefPubMedGoogle Scholar
  41. 41.
    Luo Q., Howell R. C., Dankova M., Bartis J., Williams C. W. et al. (2001) Inorg. Chem. 40:1894CrossRefPubMedGoogle Scholar
  42. 42.
    Luo Q., Howell R. C., Bartis J., Dankova M., Horrocks W. D. Jr. et al. (2002) Inorg. Chem. 41:6112CrossRefPubMedGoogle Scholar
  43. 43.
    Kortz U. (2003) J. Cluster Sci. 14: 205CrossRefGoogle Scholar
  44. 44.
    Peacock R. D., Weakley T. J. R. (1971) J. Chem. Soc. A: 1836Google Scholar
  45. 45.
    Molchanov V. P., Kazanskii L. P., Torchenkova E. A., Simonov V. I. (1979) Crystallogr. 24: 96Google Scholar
  46. 46.
    D. Drewes, B. Krebs (2006). Z. Naturforsch., in press Google Scholar
  47. 47.
    L. Bion, F. Mercier, P. Decambox, P. Moisy (1999). Radiochim. Acta 161Google Scholar
  48. 48.
    Lu Y.-W., Keita B., Nadjo L. (2004) Polyhedron 23: 1579CrossRefGoogle Scholar
  49. 49.
    Van Pelt C. E., Crooks W. J. III, Choppin G. R. (2003) Inorg. Chim. Acta. 346:215CrossRefGoogle Scholar
  50. 50.
    R. Contant, (1990) Inorg. Synth. 27, 71Google Scholar
  51. 51.
    A. I. Vogel (1961) A Text-Book of Quantitative Inorganic Analysis including Elementary Instrumental Analysis. 3rd edn. (Longmans), 43 pp.Google Scholar
  52. 52.
    Martell A. E., Motekaitis R. J. (1992) Determination and Use of Stability Constants 2 edn.; Wiley VCH, New York, 200 ppGoogle Scholar
  53. 53.
    J.-P. Ciabrini, R. Contant (1993) J. Chem. Research (M). 2720Google Scholar
  54. 54.
    Contant R., Ciabrini J.-P. (1982) J. Chem. Res (M) 1982: 641Google Scholar
  55. 55.
    V. P. Yusov (1980). Radiokhimiya 22, 727Google Scholar
  56. 56.
    S. L. Wu and Jr. W. D. Horrocks (1997). J.C.S. Dalton 1497Google Scholar
  57. 57.
    Wu S. L., Horrocks W. D. Jr. (1996) Anal. Chem. 68:394CrossRefGoogle Scholar
  58. 58.
    J. F. Kirby and L. C. W. Baker (1998). Inorg. Chem. 37, 5537Google Scholar
  59. 59.
    N. Laronze, J. Marrot and G. Herve (2003), Inorg. Chem. 42, 5857Google Scholar
  60. 60.
    V. A. Grigoriev, C. L. Hill and I. A. Weinstock, (2000). J. Am. Chem. Soc. 122, 3544Google Scholar
  61. 61.
    V. A. Grigoriev, D. Cheng, C. L. Hill, and I. A. Weinstock (2001). J. Am. Chem. Soc. 123, 5292Google Scholar
  62. 62.
    Zhang C., Howell R. C., Luo Q., Fieselmann H. L., Todaro L. et al. (2005). Inorg. Chem. 44:3569CrossRefPubMedGoogle Scholar
  63. 63.
    D. M. Y. Barrett, I. A. Kawha, J. T. Mague, and G. L. McPherson (1995). J. Org. Chem. 60, 5946Google Scholar
  64. 64.
    R. D. Peacock and T. J. R. Weakley (1971). J. Chem. Soc. A.Google Scholar
  65. 65.
    B. Burton-Pye, R. C. Howell, Q. Luo and L. C. Francesconi (2006). work in progressGoogle Scholar
  66. 66.
    Boglio C., Lenoble G., Duhayon C., Hasenknopf B., Thouvenot R. et al. (2006) Inorg. Chem. 45:1389CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Cheng Zhang
    • 1
  • Laurence Bensaid
    • 1
  • Donna McGregor
    • 1
  • Xikui Fang
    • 2
  • Robertha C. Howell
    • 1
  • Benjamin Burton-Pye
    • 1
  • Qunhui Luo
    • 1
  • Louis Todaro
    • 1
  • Lynn C. Francesconi
    • 1
    Email author
  1. 1.Department of ChemistryHunter College and the Graduate School of the City University of New YorkNew YorkUSA
  2. 2.Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations