Journal of Cluster Science

, Volume 17, Issue 2, pp 257–266 | Cite as

Observation and Theoretical Analysis of the “Sensitive Coordination Sites” in the Isopolyoxomolybdate Cluster \([\hbox{Mo}_{36}\hbox{O}_{112}(\hbox{H}_{2}\hbox{O})_{14}]^{8-}\)

  • De-Liang Long
  • Carsten Streb
  • Paul Kögerler
  • Leroy CroninEmail author

Two isopolyoxomolybdate {Mo36} cluster compounds are presented, where one incorporates two sodium ions into the {Mo36} cluster cavity and the other does not, showing different “sensitive coordination sites” to organic cation ligands TEAH+ (protonated triethanolamine) as identified by X-ray crystallography, and rationalized by DFT calculations. The compound (TEAH)6{Na2 [Mo36O112(H2O)14]}· 28H2O (1) crystallizes in the trinclinic space group P−1, a=15.8931(2) Å, b=17.3089(2) Å, c=18.1880(3) Å, \(\alpha=101.210(1)\), \(\beta= 95.481(1)\), \(\gamma=116.585(1)^{\circ}\), V=4292.95(10) Å3, D c=2.688 g cm−3. 16838 unique reflections and 1213 refined parameters were used in structure refinement. R1=0.032, R2=0.071. When sodium is eliminated from the reaction system, the new compound (TEAH)8[Mo36O112 (H2O)14]· 10 H2O (2) was also isolated and crystallographically characterized. Compound 2 crystallizes in the monoclinic space group P−1, a=16.3351(3) Å, b=16.5709(4) Å, c=18.5803(5) Å, \(\alpha=83.330(1)\), \(\beta=65.010(2)\), \(\gamma=85.107(2)^{\circ}\), V=4524.08(18) Å3, D c=2.525 g cm−3. 17591 unique reflections and 1016 refined parameters were used in structure refinement. R1=0.044, R2=0.128.

Key words

Isopolymolybdate sensitive coordination sites self assembly theoretical studies 



This work was supported by the Leverhulme Trust (London), The Royal Society, The University of Glasgow and the EPSRC. The EPSRC provided funds for the X-ray diffractometer.


  1. 1.
    L. Cronin (2004), High Nuclearity Polyoxometalate Clusters in Comprehensive Coordination Chemistry 2, Ed. 7, 1; M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34; C. L. Hill (1998). Chem. Rev., 98, 1.Google Scholar
  2. 2.
    Wassermann K., Dickman M. H., Pope M. T. (1997). Angew. Chem. Int. Ed. Engl. 36:1445CrossRefGoogle Scholar
  3. 3.
    Cronin L., Beugholt C., Krickemeyer E., Schmidtmann M., Bögge H., Kögerler P., Luong T. K. K., Müller A. (2002). Angew. Chem. Int. Ed., 41:2805CrossRefGoogle Scholar
  4. 4.
    Müller A., Beckmann E., Bögge H., Schmidtmann M., Dress A. (2002). Angew. Chem. Int. Ed. 41:1162CrossRefGoogle Scholar
  5. 5.
    Long D. -L., Kögerler P., Farrugia L. J., Cronin L. (2003). Angew. Chem. Int. Ed. 42:4180CrossRefGoogle Scholar
  6. 6.
    D.-L. Long, P. Kögerler, L. J. Farrugia and L. Cronin (2005). Dalton, 1372.Google Scholar
  7. 7.
    Long D. -L., Kögerler P., Cronin L. (2004). Angew. Chem. Int. Ed., 43:1817CrossRefGoogle Scholar
  8. 8.
    D.-L. Long, D. Orr, G. Seeber, P. Kögerler, L. J. Farrugia and L. Cronin (2003). J. Clust. Sci., 14 Google Scholar
  9. 9.
    Abbas H., Pickering A. L., Long D. -L., Kögerler P., Cronin L. (2005). Chem. Eur. J. 11:1071CrossRefGoogle Scholar
  10. 10.
    B. Krebs and I. Paulat-Boschen (1982). Acta Cryst., Sect. B, 38, 1710; A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge, W. Plass, A. Proust, L. Dloczik, C. Menke, J. Meyer and R. Rohlfing (1994). Z. Anorg. Allg. Chem., 620, 599; B. Krebs, S. Stiller, K. H. Tytko and J. Mehmke (1991). Euro. J. Solid Stat. Inorg. Chem., 28, 883; S. Zhang, D. Liao, M. Shao and Y. Tang (1986). J. Chem. Soc., Chem. Comm., 835; B. Krebs and I. Paulat-Boeschen (1979). J. Chem. Soc., Chem. Comm., 780; R. Atencio, A. Briceno and X. Galindo (2005). Chem. Commun., 637; S. -W. Zhang, Y. -G. Wei, Q. Yu, M. -C. Shao and Y. -Q. Tang (1997). J. Am. Chem. Soc., 119, 6440.Google Scholar
  11. 11.
    Blessing R. H. (1995). Acta Cryst. A51:33Google Scholar
  12. 12.
    Computational details: DFT calculations were performed on isolated cluster anions using the TURBOMOLE 5.7 program package (O. Treutler, R. Ahlrichs (1995). J. Chem. Phys. 102, 346) employing TZVP basis sets and hybrid B3-LYP exchange/correlation functionals. In a first step, hydrogen positions of H2O ligand groups were modelled onto the crystallographic coordinates of the {Mo36} anions 1a and 2a whereby molecular C i symmetry was maintained. These coordinates were then allowed to relax until the total DFT energies converged, this resulted in maximum deviations smaller than 0.04 Å from the initial crystallographic coordinates. Atomic point charges were derived from the such-obtained final geometries using the Löwdin formalism. The use of the COSMO solvation model to account for continuum polarization effects in aqueous solution significantly and evenly decreased the energies of the frontier orbitals but did not significantly affect the charge distributions.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • De-Liang Long
    • 1
  • Carsten Streb
    • 1
  • Paul Kögerler
    • 2
  • Leroy Cronin
    • 1
    Email author
  1. 1.WestCHEM, Department of ChemistryJoseph Black Building, The University of GlasgowGlasgowUK
  2. 2.Department of Physics and Astronomy and Ames LaboratoryIowa State UniversityIowaUSA

Personalised recommendations