Journal of Cluster Science

, Volume 17, Issue 1, pp 97–110 | Cite as

ZnS and ZnSe Nanoparticles via Solid-State and Solution Thermolysis of Zinc Silylchalcogenolate Complexes

  • Marty W. DeGroot
  • Chhatra Khadka
  • Harald Rösner
  • John F. Corrigan


The thermolysis of the zinc trimethylsilylchalcogenolate complexes (N,N′-tmeda)Zn(ESiMe3)2 (E = S, 1; E = Se, 2) and (3,5-Me2-C5H3N)2Zn(ESiMe3)2 (E = S, 3; E = Se, 4) has been investigated. Solid-state thermal decomposition of complexes 1–4 above 250°C results in the formation of hexagonal ZnS and cubic ZnSe, respectively, via the liberation of TMEDA (12) or 3,5-lutidine (34) and E(SiMe3)2. Solid-state or solution thermolysis of these complexes up to 200°C produces nanocrystalline ZnS and ZnSe materials whose surface is protected by either coordinated TMEDA or 3,5-lutidine ligands. The progress of the step-wise solid-state decomposition of these complexes was monitored by thermogravimetric and single differential thermal analysis and volatile decomposition products in both solution and solid-state experiments were identified by GC/MS.


Nanoparticles precursors semiconductors thermochemistry. 



Financial support of this research and equipment funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). The NSERC is also thanked for a post-graduate scholarship (M.W.D.). The Government of Ontario’s PREA program is gratefully acknowledged for financial support, and The University of Western Ontario and the Canada Foundation for Innovation are thanked for equipment funding.


  1. 1.
    Alivisatos A. P. (1996). J. Phys. Chem. B 100:13226CrossRefGoogle Scholar
  2. 2.
    Weller H. (1993). Angew. Chem. Int. Ed. Engl. 32:41CrossRefGoogle Scholar
  3. 3.
    Woggon U. (1997). Optical Properties of Semiconductor Quantum Dots. Springer, New YorkGoogle Scholar
  4. 4.
    Sapra S., Sarma D. D. (2004) The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Murray C. B., Kagan C. R., Bawendi M. G. (2000). Annu. Rev. Mater. Sci. 30:545CrossRefGoogle Scholar
  6. 6.
    Efros A. L., Rosen M. (2000). Annu. Rev. Mater. Sci. 30:475CrossRefGoogle Scholar
  7. 7.
    Wang Y., Herron N. (1991). J. Phys. Chem. 95:525CrossRefGoogle Scholar
  8. 8.
    Steigerwald M. L., Brus L. E. (1990). Acc. Chem. Res. 23:183CrossRefGoogle Scholar
  9. 9.
    (a) D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen (1997). Nature 389, 699. (b) V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos (1994). Nature 370, 354. (c) S. V. Kershaw, M. T. Harrison, and M. G. Burt (2003). Philos. Trans. R. Soc. London, Ser. A 361, 331. (d) C. Radloff, C. E. Moran, J. B. Jackson, and N. J. Halas (2003). Mol. Nanoelectr. 229. (e) I. Willner and B. Willner (2002). Pure Appl. Chem. 74, 1773. (f) D. L. Feldheim and C. D. Keating (1998) Chem. Soc. Rev. 1Google Scholar
  10. 10.
    Murray C. B., Norris D. J., Bawendi M. G. (1993). J. Am. Chem. Soc. 115:8706CrossRefGoogle Scholar
  11. 11.
    (a) J. E. B. Katari, V. L. Colvin, and A. P. Alivisatos (1994). J. Phys. Chem. 98, 4109. (b) X. Peng, J. Wickham, and A. P. Alivisatos (1998). J. Am. Chem. Soc. 120, 5343. (c) L. Manna, E. C. Scher, and A. P. Alivisatos (2000). J. Am. Chem. Soc. 122, 12700Google Scholar
  12. 12.
    Peng Z. A., Peng X. (2001). J. Am. Chem. Soc. 123:1389CrossRefGoogle Scholar
  13. 13.
    Hines M. A., Guyot-Sionnest P. (1998). J. Phys. Chem. B 102:3655CrossRefGoogle Scholar
  14. 14.
    For reviews see: (a) N. L. Pickett and P. O’Brien (2001). Chem. Rec. 1, 467. (b) T. Trindade, P. O’Brien, and N. L. Pickett (2001). Chem. Mater. 13, 3843Google Scholar
  15. 15.
    (a) T. Trindade, P. O’Brien, and X.-M. Zhang (1997). Chem. Mater. 9, 523. (b) B. Ludolph, M. A. Malik, P. O’Brien, and N. Revaprasadu (1998). Chem. Commun. 1849. (c) N. Revaprasadu, M. A. Malik, P. O’Brien, M. Zulu, and G. Wakefield (1998). J. Mater. Chem. 1885. (d) N. Revaprasadu, M. A. Malik, P. O’Brien, and G. Wakefield (1999). J. Mater. Res. 14, 3237. (e) M. Lazell and P. O’Brien (1999). Chem. Commun. 2041. (f) M. A. Malik, N. Revaprasadu, and P. O’Brien (2001). Chem. Mater. 13, 913Google Scholar
  16. 16.
    (a) J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stuczynski, L. E. Brus, and M. L. Steigerwald (1989). J. Am. Chem. Soc. 111, 4141. (b) M. L. Steigerwald, S. M. Stuczynski, Y. U. Kwon, D. A. Vennos, and J. G. Brennan (1993). Inorg. Chim. Acta 212, 219. (c) J. G. Brennan, T. Siegrist, P. J. Carroll, S. M. Stucznyski, L. E. Brus, and M. L. Steigerwald (1990). Chem. Mater. 2, 403Google Scholar
  17. 17.
    (a) M. Bochmann, G. C. Bwembya, A. K. Powell, and X. Song (1995). Polyhedron, 14, 3495. (b) M. Bochmann, K. Webb, M. Karman, and M. B. Hursthouse (1990). Angew. Chem. Int. Ed. Engl. 29, 638Google Scholar
  18. 18.
    (a) Y.-W. Jun, J.-E. Koo, and J. Cheon (2000). Chem. Commun. 1243. (b) Y.-W. Jun, C.-S. Choi, and J. Cheon. (2001). Chem. Commun. 101Google Scholar
  19. 19.
    Rees W. S. Jr., Kräuter G. (1996). J. Mater. Res. 11:3005CrossRefGoogle Scholar
  20. 20.
    DeGroot M. W., Corrigan J. F. (2005). Organometallics 24:3378CrossRefGoogle Scholar
  21. 21.
    DeGroot M. W., Taylor N. J., Corrigan J. F. (2003). J. Am. Chem. Soc. 125:864CrossRefGoogle Scholar
  22. 22.
    M. W. DeGroot, N. J. Taylor, and J. F. Corrigan (2004). J. Mater. Chem. 654Google Scholar
  23. 23.
    DeGroot M. W., Corrigan J. F. (2004). Angew. Chem. Int. Ed. 43:5355CrossRefGoogle Scholar
  24. 24.
    DeGroot M. W., Taylor N. J., Corrigan J. F. (2005). Inorg. Chem. 44:5447CrossRefGoogle Scholar
  25. 25.
    Pangborn A. B., Giardello M. A., Grubbs R. H., Rosen R. K., Timmers F. J. (1996). Organometallics 15:1518CrossRefGoogle Scholar
  26. 26.
    Tran D. T. T., Corrigan J. F. (2000). Organometallics 19:5202CrossRefGoogle Scholar
  27. 27.
    D. T. T. Tran and J. F. Corrigan, unpublished resultsGoogle Scholar
  28. 28.
    Deng Z.-X., Wang C., Sun X., Li Y. (2002). Inorg. Chem. 41:869CrossRefGoogle Scholar
  29. 29.
    X. Ouyang, T.-Y. Tsai, D.-H. Chen, Q.-J. Huang, W.-H. Cheng, and A. Clearfield (2003). Chem. Commun. 886Google Scholar
  30. 30.
    JCPDS Card File No. 05-0492Google Scholar
  31. 31.
    JCPDS Card File No. 05-0522Google Scholar
  32. 32.
    Brus L. E. (1984). J. Chem. Phys. 80:4403CrossRefGoogle Scholar
  33. 33.
    Zachariasen W. (1926). Z. Physik. Chem. 124:436Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marty W. DeGroot
    • 1
  • Chhatra Khadka
    • 1
  • Harald Rösner
    • 2
  • John F. Corrigan
    • 1
  1. 1.Department of ChemistryThe University of Western OntarioLondonCanada
  2. 2.Institut für NanotechnologieForschungszentrum Karlsruhe in der Helmholtz-GemeinschaftEggenstein-LeopoldshafenGermany

Personalised recommendations