Advertisement

Mutual alteration of NOD2-associated Blau syndrome and IFNγR1 deficiency

  • Zuzana ParackovaEmail author
  • Marketa Bloomfield
  • Petra Vrabcova
  • Irena Zentsova
  • Adam Klocperk
  • Tomas Milota
  • Michael Svaton
  • Jean-Laurent Casanova
  • Jacinta Bustamante
  • Eva Fronkova
  • Anna Sediva
ORIGINAL ARTICLE
  • 74 Downloads

Abstract

Blau syndrome (BS) is an auto-inflammatory granulomatous disease that possibly involves abnormal response to interferon gamma (IFNγ) due to exaggerated nucleotide-binding oligomerization domain containing 2 (NOD2) activity. Mendelian susceptibility to mycobacterial diseases (MSMD) is an infectious granulomatous disease that is caused by impaired production of or response to IFNγ. We report a mother and daughter who are both heterozygous for NOD2c.2264C˃T variant and dominant-negative IFNGR1818del4 mutation. The 17-year-old patient displayed an altered form of BS and milder form of MSMD, whereas the 44-year-old mother was completely asymptomatic. This experiment of nature supports the notion that IFNγ is an important driver of at least some BS manifestations and that elucidation of its involvement in the disease immunopathogenesis may identify novel therapeutic targets.

Keywords

NOD2 IFNγR1 IFNγ WES MSMD Blau syndrome methotrexate 

Notes

Author contribution

ZP designed the study, performed the experiments, analyzed and interpreted the results, co-wrote the manuscript, and supervised all work. MB treated the patient, interpreted the results, and co-wrote the manuscript. PV, IZ, MR, and AK performed the experiments and analyzed the data. TM provided clinical information. EF and MS performed genetic analysis. JB and JLC revised the manuscript and contributed to the discussion. AS treated the patient and supervised the manuscript preparation. All authors contributed to manuscript revision, read and approved the submitted version.

Funding information

This work was supported by grants GAUK 460218 and 954218 issued by the Charles University in Prague, Czech Republic, and AZV NV18-05-00162 from the Ministry of Health of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics statement

This study was carried out in accordance with the recommendation of the Ethical Committee of the 2nd Faculty of Medicine, Charles University, in Prague and University Hospital in Motol, Czech Republic. The protocol was approved by the Ethical Committee and all subjects gave informed consent in accordance with the Declaration of Helsinki.

Supplementary material

10875_2019_720_Fig6_ESM.png (201 kb)
Supplementary Figure 1

(PNG 200 kb)

10875_2019_720_MOESM1_ESM.TIF
High resolution image (TIF 3003 kb)

References

  1. 1.
    Wouters CH, Maes A, Foley KP, Bertin J, Rose CD. Blau syndrome, the prototypic auto-inflammatory granulomatous disease. Pediatr Rheumatol Online J. 2014;12:33.  https://doi.org/10.1186/1546-0096-12-33.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rose CD, Pans S, Casteels I, Anton J, Bader-Meunier B, Brissaud P, et al. Blau syndrome: cross-sectional data from a multicentre study of clinical, radiological and functional outcomes. Rheumatology. 2015;54:1008–16.  https://doi.org/10.1093/rheumatology/keu437.CrossRefGoogle Scholar
  3. 3.
    Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S, et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood. 2005;105:1195–7.  https://doi.org/10.1182/blood-2004-07-2972.CrossRefGoogle Scholar
  4. 4.
    Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9–23.  https://doi.org/10.1038/nri3565.CrossRefPubMedGoogle Scholar
  5. 5.
    Negroni A, Pierdomenico M, Cucchiara S, Stronati L. NOD2 and inflammation: current insights. J Inflamm Res. 2018;11:49–60.  https://doi.org/10.2147/JIR.S137606.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.  https://doi.org/10.1074/jbc.C200651200.CrossRefGoogle Scholar
  7. 7.
    Landes MB, Rajaram MVS, Nguyen H, Schlesinger LS. Role for NOD2 in Mycobacterium tuberculosis -induced iNOS expression and NO production in human macrophages. J Leukoc Biol. 2015;97:1111–9.  https://doi.org/10.1189/jlb.3A1114-557R.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brooks MN, Rajaram MVS, Azad AK, Amer AO, Valdivia-Arenas MA, Park J-H, et al. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol. 2011;13:402–18.  https://doi.org/10.1111/j.1462-5822.2010.01544.x.CrossRefGoogle Scholar
  9. 9.
    Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci. 2012;109:17537–42.  https://doi.org/10.1073/pnas.1202870109.CrossRefGoogle Scholar
  10. 10.
    Miceli-Richard C, Lesage S, Rybojad M, Prieur A-M, Manouvrier-Hanu S, Häfner R, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29:19–20.  https://doi.org/10.1038/ng720.CrossRefGoogle Scholar
  11. 11.
    Rose CD, Martin TM, Wouters CH. Blau syndrome revisited. Curr Opin Rheumatol. 2011;23:411–8.  https://doi.org/10.1097/BOR.0b013e328349c430.CrossRefPubMedGoogle Scholar
  12. 12.
    Ebrahimiadib N, Samra KA, Domina AM, Stiles ER, Ewer R, Bocian CP, et al. A novel NOD2-associated mutation and variant Blau syndrome: phenotype and molecular analysis. Ocul Immunol Inflamm. 2018;26:57–64.  https://doi.org/10.1080/09273948.2016.1185529.CrossRefGoogle Scholar
  13. 13.
    Martin TM, Zhang Z, Kurz P, Rosé CD, Chen H, Lu H, et al. The NOD2 defect in Blau syndrome does not result in excess interleukin-1 activity. Arthritis Rheum. 2009;60:611–8.  https://doi.org/10.1002/art.24222.CrossRefGoogle Scholar
  14. 14.
    Son S, Lee J, Woo C-W, Kim I, Kye Y, Lee K, et al. Altered cytokine profiles of mononuclear cells after stimulation in a patient with Blau syndrome. Rheumatol Int. 2010;30:1121–4.  https://doi.org/10.1007/s00296-009-1342-4.CrossRefGoogle Scholar
  15. 15.
    Dugan J, Griffiths E, Snow P, Rosenzweig H, Lee E, Brown B, et al. Blau syndrome–associated Nod2 mutation alters expression of full-length NOD2 and limits responses to muramyl dipeptide in knock-in mice. J Immunol. 2015;194:349–57.  https://doi.org/10.4049/jimmunol.1402330.CrossRefGoogle Scholar
  16. 16.
    Rosenstiel P, Fantini M, Bräutigam K, Kühbacher T, Waetzig GH, Seegert D, et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003;124:1001–9.  https://doi.org/10.1053/gast.2003.50157.CrossRefGoogle Scholar
  17. 17.
    Takada S, Kambe N, Kawasaki Y, Niwa A, Honda-Ozaki F, Kobayashi K, et al. Pluripotent stem cell models of Blau syndrome reveal an IFN-γ–dependent inflammatory response in macrophages. J Allergy Clin Immunol. 2018;141:339–349.e11.  https://doi.org/10.1016/j.jaci.2017.04.013.CrossRefGoogle Scholar
  18. 18.
    Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al. A mutation in the interferon-γ –receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335:1941–9.  https://doi.org/10.1056/NEJM199612263352602.CrossRefGoogle Scholar
  19. 19.
    Casanova JL, Ochs H. Interferon-gamma receptor deficiency: an expanding clinical phenotype? J Pediatr. 1999;135:543–5.  https://doi.org/10.1016/S0022-3476(99)70050-8.CrossRefPubMedGoogle Scholar
  20. 20.
    Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondanèche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest. 1997;100:2658–64.  https://doi.org/10.1172/JCI119810.CrossRefGoogle Scholar
  21. 21.
    Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26:454–70.  https://doi.org/10.1016/j.smim.2014.09.008.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rosain J, Kong X-F, Martinez-Barricarte R, Oleaga-Quintas C, Ramirez-Alejo N, Markle J, et al. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol Cell Biol. 2018.  https://doi.org/10.1111/imcb.12210.CrossRefGoogle Scholar
  23. 23.
    Oleaga-Quintas C, Deswarte C, Moncada-Vélez M, Metin A, Krishna Rao I, Kanık-Yüksek S, et al. A purely quantitative form of partial recessive IFN-γR2 deficiency caused by mutations of the initiation or second codon. Hum Mol Genet. 2018;27:3919–35.  https://doi.org/10.1093/hmg/ddy275.
  24. 24.
    Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3:eaau8714.  https://doi.org/10.1126/sciimmunol.aau8714.CrossRefGoogle Scholar
  25. 25.
    Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, Mele F, et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol. 2018;3:eaau6759.  https://doi.org/10.1126/sciimmunol.aau6759.CrossRefGoogle Scholar
  26. 26.
    Kong X-F, Martinez-Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick EK, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973–85.  https://doi.org/10.1038/s41590-018-0178-z.CrossRefGoogle Scholar
  27. 27.
    Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18:347–61.  https://doi.org/10.1016/j.smim.2006.07.010.CrossRefGoogle Scholar
  28. 28.
    Rosenzweig SD, Holland SM. Defects in the interferon-gamma and interleukin-12 pathways. Immunol Rev. 2005;203:38–47.  https://doi.org/10.1111/j.0105-2896.2005.00227.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Casanova J-L, Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche M-C, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet. 1999;21:370–8.  https://doi.org/10.1038/7701.CrossRefGoogle Scholar
  30. 30.
    Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet. 2004;364:2113–21.  https://doi.org/10.1016/S0140-6736(04)17552-1.CrossRefGoogle Scholar
  31. 31.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.  https://doi.org/10.1093/bioinformatics/btp324.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 genome project data processing subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.  https://doi.org/10.1093/bioinformatics/btp352.CrossRefGoogle Scholar
  33. 33.
    Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.  https://doi.org/10.1101/gr.129684.111.CrossRefGoogle Scholar
  34. 34.
    Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, et al. Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program. SnpSift Front Genet. 2012;3:35.  https://doi.org/10.3389/fgene.2012.00035.
  35. 35.
    Janssen CEI, Rose CD, De Hertogh G, Martin TM, Bader Meunier B, Cimaz R, et al. Morphologic and immunohistochemical characterization of granulomas in the nucleotide oligomerization domain 2–related disorders Blau syndrome and Crohn disease. J Allergy Clin Immunol. 2012;129:1076–84.  https://doi.org/10.1016/j.jaci.2012.02.004.CrossRefGoogle Scholar
  36. 36.
    Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev. 2019;287:33–49.  https://doi.org/10.1111/imr.12721.CrossRefPubMedGoogle Scholar
  37. 37.
    Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J Allergy Clin Immunol. 2018;142:1932–46.  https://doi.org/10.1016/j.jaci.2018.02.055.CrossRefGoogle Scholar
  38. 38.
    La Cava A. Common variable immunodeficiency: two mutations are better than one. J Clin Invest. 2013;123:4142–3.  https://doi.org/10.1172/JCI72476.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science (80- ). 2007, 317:1522–7.  https://doi.org/10.1126/science.1139522.CrossRefGoogle Scholar
  40. 40.
    Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, Prochnicka-Chalufour A, et al. Novel STAT1 Alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2:e131.  https://doi.org/10.1371/journal.pgen.0020131.CrossRefGoogle Scholar
  41. 41.
    Takeda K, Kawai T, Nakazawa Y, Komuro H, Shoji K, Morita K, et al. Augmentation of antitubercular therapy with IFNγ in a patient with dominant partial IFNγ receptor 1 deficiency. Clin Immunol. 2014;151:25–8.  https://doi.org/10.1016/j.clim.2014.01.004.CrossRefGoogle Scholar
  42. 42.
    Saulsbury FT, Wouters CH, Martin TM, Austin CR, Doyle TM, Goodwin KA, et al. Incomplete penetrance of the NOD2 E383K substitution among members of a pediatric granulomatous arthritis pedigree. Arthritis Rheum. 2009;60:1804–6.  https://doi.org/10.1002/art.24532.CrossRefGoogle Scholar
  43. 43.
    Rosé CD, Aróstegui JI, Martin TM, Espada G, Scalzi L, Yagüe J, et al. NOD2-associated pediatric granulomatous arthritis, an expanding phenotype: study of an international registry and a national cohort in Spain. Arthritis Rheum. 2009;60:1797–803.  https://doi.org/10.1002/art.24533.CrossRefGoogle Scholar
  44. 44.
    Harada J, Nakajima T, Kanazawa N. A case of Blau syndrome with NOD2 E383K mutation. Pediatr Dermatol. 2016;33:e385–7.  https://doi.org/10.1111/pde.12908.CrossRefPubMedGoogle Scholar
  45. 45.
    Galozzi P, Negm O, Greco E, Alkhattabi N, Gava A, Sfriso P, et al. Ex vivo and in vitro production of pro-inflammatory cytokines in Blau syndrome. Reumatismo. 2015;66:277–84.  https://doi.org/10.4081/reumatismo.2014.772.CrossRefGoogle Scholar
  46. 46.
    Fieschi C, Dupuis S, Picard C, Smith CI, Holland SM, Casanova JL. High levels of interferon gamma in the plasma of children with complete interferon gamma receptor deficiency. Pediatrics. 2001;107:E48.  https://doi.org/10.1542/PEDS.107.4.E48.CrossRefPubMedGoogle Scholar
  47. 47.
    J-Fran EMILE, PATEY N, Fr ALTARE, LAMHAMEDI S, JOUANGUY E, Fran BOMAN, et al. MOUSNIER J-Fran, et al. Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol. 1997;181:25–30.  https://doi.org/10.1002/(SICI)1096-9896(199701)181:1<25::AID-PATH747>3.0.CO;2-Z.
  48. 48.
    Xie J, Deng W. NOD2 signaling and role in pathogenic mycobacterium recognition, infection and immunity. Cell Physiol Biochem. 2012;30:953–63.  https://doi.org/10.1159/000341472.CrossRefPubMedGoogle Scholar
  49. 49.
    Ferwerda G, Girardin SE, Kullberg B-J, Le Bourhis L, de Jong DJ, Langenberg DML, et al. NOD2 and toll-like receptors are nonredundant recognition systems of mycobacterium tuberculosis. PLoS Pathog. 2005;1:e34.  https://doi.org/10.1371/journal.ppat.0010034.CrossRefGoogle Scholar
  50. 50.
    Osborne GEN, Mallon E, Mayou SC. Juvenile sarcoidosis after BCG vaccination. J Am Acad Dermatol. 2003;48:S99–S102.  https://doi.org/10.1067/mjd.2003.158.CrossRefPubMedGoogle Scholar
  51. 51.
    Okafuji I, Nishikomori R, Kanazawa N, Kambe N, Fujisawa A, Yamazaki S, et al. Role of the NOD2 genotype in the clinical phenotype of Blau syndrome and early-onset sarcoidosis. Arthritis Rheum. 2009;60:242–50.  https://doi.org/10.1002/art.24134.CrossRefGoogle Scholar
  52. 52.
    Sakai H, Ito S, Nishikomori R, Takaoka Y, Kawai T, Saito M, et al. A case of early-onset sarcoidosis with a six-base deletion in the NOD2 gene. Rheumatology. 2010;49:194–6.  https://doi.org/10.1093/rheumatology/kep315.CrossRefGoogle Scholar
  53. 53.
    Black GF, Weir RE, Floyd S, Bliss L, Warndorff DK, Crampin AC, et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet. 2002;359:1393–401.  https://doi.org/10.1016/S0140-6736(02)08353-8.CrossRefGoogle Scholar
  54. 54.
    Çakan M, Keskindemirci G, Aydoğmuş Ç, Akı H, Hatipoğlu N, Kıyak A, et al. Coexistence of early onset sarcoidosis and partial interferon-γ receptor 1 deficiency. Turk J Pediatr. 2016;58:545–9.  https://doi.org/10.24953/turkjped.2016.05.015.CrossRefGoogle Scholar
  55. 55.
    Henter JI, Elinder G, Söder O, Hansson M, Andersson B, Andersson U. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood. 1991;78:2918–22 Available at: http://www.ncbi.nlm.nih.gov/pubmed/1954380 [Accessed February 19, 2019].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zuzana Parackova
    • 1
    Email author
  • Marketa Bloomfield
    • 1
    • 2
  • Petra Vrabcova
    • 1
  • Irena Zentsova
    • 1
  • Adam Klocperk
    • 1
  • Tomas Milota
    • 1
  • Michael Svaton
    • 3
  • Jean-Laurent Casanova
    • 4
    • 5
    • 6
    • 7
    • 8
  • Jacinta Bustamante
    • 4
    • 5
    • 6
    • 9
  • Eva Fronkova
    • 3
  • Anna Sediva
    • 1
  1. 1.Department of Immunology, 2nd Faculty of MedicineCharles University and Motol University HospitalPrague 5Czech Republic
  2. 2.Department of Pediatrics1st Faculty of Medicine Charles University and Thomayer’s HospitalPragueCzech Republic
  3. 3.CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
  4. 4.Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163, Necker Hospital for Sick ChildrenParisFrance
  5. 5.Imagine InstituteParis Descartes UniversityParisFrance
  6. 6.St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUSA
  7. 7.Howard Hughes Medical InstituteNew YorkUSA
  8. 8.Pediatric Hematology-Immunology UnitNecker Hospital for Sick Children, AP-HPParisFrance
  9. 9.Study Center for Primary ImmunodeficienciesAP-HP, Necker Children HospitalParisFrance

Personalised recommendations