Journal of Clinical Immunology

, Volume 37, Issue 6, pp 582–591 | Cite as

Long-Term Outcome of Adenosine Deaminase-Deficient Patients—a Single-Center Experience

  • Ori Scott
  • Vy Hong-Diep Kim
  • Brenda Reid
  • Anne Pham-Huy
  • Adelle R. Atkinson
  • Alessandro Aiuti
  • Eyal GrunebaumEmail author
Original Article



Inherited defects in the adenosine deaminase (ADA) enzyme can cause severe combined immune deficiency (SCID) and systemic abnormalities. Management options for ADA-deficient patients include enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy (GT). Here, we describe the long-term benefits of these treatments.


Survival, infections, systemic sequelae, and laboratory assessments were recorded for all ADA-deficient SCID patients, managed at a single center since 1985, who survived 5 or more years following treatment.


Of 20 ADA-deficient patients, the 8 (40%) who survived 5 or more years (range 6–29.5 years, median 14 years) were included in the study. Among the long-term survivors, two patients were treated exclusively with ERT, five underwent HSCT (three from HLA-matched sibling donors, two from HLA-mismatched related donors), and one received GT. The long-term survivors often suffered from recurrent respiratory infections; however, opportunistic infections occurred in only one patient. Systemic sequelae included lung disease such as bronchiectasis and asthma (four patients), neurologic abnormalities (six patients), metabolic disturbances (two patients), allergy and autoimmunity (six patients), and neoplasms (three patients). Normal CD4+ T cell numbers and function, as well as antibody production, were usually observed after HSCT and GT, but not after ERT. Late deaths occurred in two patients at 15 and 25 years after HSCT, respectively, and were attributed to respiratory failure.


ADA-deficient patients commonly suffer from long-term complications, emphasizing the need for improved management and for multi-disciplinary follow-up.


Immune deficiency adenosine deaminase bone marrow transplant enzyme replacement gene therapy PEG-ADA 



Adenosine deaminase






Total deoxyadenosine nucleotides


Enzyme replacement therapy


Gene therapy


Hematopoietic stem cell transplant


Intravenous immunoglobulin


HLA-mismatched related donors


HLA-mismatched donors


HLA-matched sibling donor


HLA-matched unrelated donors


Severe combined immune deficiency



The authors thank Dr. Chaim M. Roifman for his contributions to the diagnosis and management of the patients as well as the development of this manuscript. This work was supported in part by The Donald and Audrey Campbell Chair for Immunology (EG).

Compliance with Ethical Standards

Conflict of Interest

AA is the principal investigator of the ADA-SCID gene therapy clinical trial with gamma-RV; the gene therapy was licensed to GlaxoSmithKline (GSK) in 2010 and GSK became the financial sponsor of the clinical trial. Other authors disclose no conflicts of interest.


  1. 1.
    Grunebaum E, Cohen A, Roifman CM. Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. 2013;13(6):630–8. doi: 10.1097/ACI.0000000000000006.CrossRefPubMedGoogle Scholar
  2. 2.
    Nofech-Mozes Y, Blaser SI, Kobayashi J, Grunebaum E, Roifman CM. Neurologic abnormalities in patients with adenosine deaminase deficiency. Pediatr Neurol. 2007;37(3):218–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Manson D, Diamond L, Oudjhane K, Hussain FB, Roifman C, Grunebaum E. Characteristic scapular and rib changes on chest radiographs of children with ADA-deficiency SCIDS in the first year of life. Pediatr Radiol. 2013 Mar;43(5):589–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Sauer AV, Mrak E, Hernandez RJ, et al. ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood. 2009;114(15):3216–26. doi: 10.1182/blood-2009-03-209221.CrossRefPubMedGoogle Scholar
  5. 5.
    Pham-Huy A, Hong-Diep Kim V, Nizalik E, Weiler G, Vethamuthu J, Grunebaum E. Atypical hemolytic-uremic syndrome in a patients with adenosine deaminase deficiency. LymphoSign Journal. 2015;2(4):195–9. doi: 10.14785/lpsn-2015-0010.CrossRefGoogle Scholar
  6. 6.
    Bollinger ME, Arredondo-Vega FX, Santisteban I, Schwarz K, Hershfield MS, Lederman HM. Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency. New Engl J Med. 1996;334(21):1367–71. doi: 10.1056/NEJM199605233342104.CrossRefPubMedGoogle Scholar
  7. 7.
    Grunebaum E, Cutz E, Roifman CM. Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. J Allergy Clin Immunol. 2012;129(6):1588–93. doi: 10.1016/j.jaci.2012.02.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Gaspar HB, Aiuti A, Porta F, Candotti F, Hershfield MS, Notarangelo LD. How I treat ADA deficiency. Blood. 2009;114(17):3524–32. doi: 10.1182/blood-2009-06-189209.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hassan A, Booth C, Brightwell A, Inborn Errors Working Party of the European Group for Blood and Marrow Transplantation and European Society for Immunodeficiency, et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood. 2012;120(17):3615–3624; quiz 3626. doi: 10.1182/blood-2011-12-396879.CrossRefPubMedGoogle Scholar
  10. 10.
    Hershfield MS. PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency. Hum Mutat. 1995;5(2):107–12. doi: 10.1002/humu.1380050202.CrossRefPubMedGoogle Scholar
  11. 11.
    Booth C, Hershfield M, Notarangelo L, et al. Management options for adenosine deaminase deficiency; proceedings of the EBMT satellite workshop. Clin Immunol (Orlando, Fla.). 2007;123(2):139–47.CrossRefGoogle Scholar
  12. 12.
    Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. New Engl J Med. 2009;360(5):447–58. doi: 10.1056/NEJMoa0805817.CrossRefPubMedGoogle Scholar
  13. 13.
    Gaspar HB, Cooray S, Gilmour KC, et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Trans Med. 2011;3(97):97ra80. doi: 10.1126/scitranslmed.3002716.Google Scholar
  14. 14.
    Kohn DB, Gaspar HB. How we manage adenosine deaminase-deficient severe combined immune deficiency (ADA SCID). J Clin Immunol. 2017 May;37(4):351–6. doi: 10.1007/s10875-017-0373-y.CrossRefPubMedGoogle Scholar
  15. 15.
    Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999 Feb 18;340(7):508–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet. 2003;361(9357):553–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Brigida I, Sauer AV, Ferrua F, Giannelli S, Scaramuzza S, Pistoia V, et al. B-cell development and functions and therapeutic options in adenosine deaminase-deficient patients. J Allergy Clin Immunol. 2014;133(3):799–806.e10.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baffelli R, Notarangelo LD, Imberti L, et al. Diagnosis, treatment and long-term follow up of patients with ADA deficiency: a single-center experience. J Clin Immunol. 2015;35(7):624–37. doi: 10.1007/s10875-015-0191-z.CrossRefPubMedGoogle Scholar
  19. 19.
    Nakazawa Y, Kawai T, Uchiyama T, Goto F, Watanabe N, Maekawa T, et al. Effects of enzyme replacement therapy on immune function in ADA deficiency patient. Clin Immunol. 2015 Dec;161(2):391–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Rogers MH, Lwin R, Fairbanks L, Gerritsen B, Gaspar HB. Cognitive and behavioral abnormalities in adenosine deaminase deficient severe combined immunodeficiency. J Pediatr. 2001;139(1):44–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Cederbaum SD, Kaitila I, Rimoin DL, Stiehm ER. The chondro-osseous dysplasia of adenosine deaminase deficiency with severe combined immunodeficiency. J Pediatr. 1976;89(5):737–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Booth C, Gaspar HB. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biol Targets Ther. 2009;3:349–58.Google Scholar
  23. 23.
    Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128(1):45–54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grunebaum E, Mazzolari E, Porta F, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006;295(5):508–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Mohamoud A. Characteristics of Hla class I and class II antigens of the Somali population. Transfus Med. 2006;16:47. (P52)CrossRefGoogle Scholar
  26. 26.
    Husain M, Grunebaum E, Naqvi A, Atkinson A, Ngan BY, Aiuti A, et al. Burkitt’s lymphoma in a patient with adenosine deaminase deficiency-severe combined immunodeficiency treated with polyethylene glycol-adenosine deaminase. J Pediatr. 2007;151(1):93–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin Immunol. 2005;117(2):133–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhong H, Chunn JL, Volmer JB, Fozard JR, Blackburn MR. Adenosine-mediated mast cell degranulation in adenosine deaminase-deficient mice. J Pharmacol Exp Ther. 2001;298(2):433–40.PubMedGoogle Scholar
  29. 29.
    Chunn JL, Young HW, Banerjee SK, Colasurdo GN, Blackburn MR. Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol (Baltimore, Md.: 1950). 2001;167(8):4676–85.CrossRefGoogle Scholar
  30. 30.
    Somech R, Lai YH, Grunebaum E, Le Saux N, Cutz E, Roifman CM. Polyethylene glycol-modified adenosine deaminase improved lung disease but not liver disease in partial adenosine deaminase deficiency. J Allergy Clin Immunol. 2009 Oct;124(4):848–50. doi: 10.1016/j.jaci.2009.07.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Komarow HD, Sokolic R, Hershfield MS, Kohn DB, Young M, Metcalfe DD, et al. Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency. Orphanet J Rare Dis. 2015;10:159. doi: 10.1186/s13023-015-0365-z.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Albuquerque W, Gaspar HB. Bilateral sensorineural deafness in adenosine deaminase-deficient severe combined immunodeficiency. J Pediatr. 2004;144(2):278–80. doi: 10.1016/j.Jpeds.2003.10.055.CrossRefPubMedGoogle Scholar
  33. 33.
    Sauer AV, Hernandez RJ, Fumagalli F, Bianchi V, Poliani PL, Dallatomasina C, et al. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients. Sci Rep. 2017 Jan 11;7:40136. doi: 10.1038/srep40136.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tamura, R., Ohta, H., Satoh, Y., Nonoyama, S., Nishida, Y., & Nibuya, M. (2016). Neuroprotective effects of adenosine deaminase in the striatum. J Cereb Blood Flow MetabGoogle Scholar
  35. 35.
    Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008 Sep;22(5):261–81.CrossRefPubMedGoogle Scholar
  36. 36.
    Kaufman D, Hershfield M, Bocchini J, Moissidis I, Jeroudi M, Bahna S. Cerebral lymphoma in an adenosine deaminase-deficient patient with severe combined immunodeficiency receiving polyethylene glycol-conjugated adenosine deaminase. Pediatrics. 2005;116:876–9.CrossRefGoogle Scholar
  37. 37.
    Carroll D, Ramani P, Lander AD. Giant-cell fibroblastoma in a patient with a bone-marrow transplant. Pediatr Surg Int. 2003;19(6):495–6. doi: 10.1007/s00383-002-0827-y.CrossRefPubMedGoogle Scholar
  38. 38.
    Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk HD. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol. 2015;6:184. doi: 10.3389/fphar.2015.00184.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kerkela E, Laitinen A, Rabina J, et al. Adenosinergic immunosuppression by human mesenchymal stromal cells (MSCs) requires co-operation with T cells. Stem Cells (Dayton, Ohio). 2016; doi: 10.1002/stem.2280.
  40. 40.
    Schuler PJ, Westerkamp AM, Kansy BA, et al. Adenosine metabolism of human mesenchymal stromal cells isolated from patients with head and neck squamous cell carcinoma. Immunobiology. 2017;222(1):66–74.CrossRefPubMedGoogle Scholar
  41. 41.
    Notarangelo LD, Stoppoloni G, Toraldo R, et al. Insulin-dependent diabetes mellitus and severe atopic dermatitis in a child with adenosine deaminase deficiency. Eur J Pediatr. 1992;151(11):811–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Ozsahin H, Arredondo-Vega FX, Santisteban I, Hershfield MS, et al. Adenosine deaminase deficiency in adults. Blood. 1997;89(8):2849–55.PubMedGoogle Scholar
  43. 43.
    Patel NC, Chinen J, Rosenblatt HM, et al. Outcomes of patients with severe combined immunodeficiency treated with hematopoietic stem cell transplantation with and without preconditioning. J Allergy Clin Immunol. 2009;124(5):1062–9.e1-4. doi: 10.1016/j.jaci.2009.08.041.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sokolic R, Maric I, Kesserwan C, Garabedian E, Hanson IC, Dodds M, et al. Myeloid dysplasia and bone marrow hypocellularity in adenosine deaminase-deficient severe combined immune deficiency. Blood. 2011;118(10):2688–94. doi: 10.1182/blood-2011-01-329359. Erratum in: Blood. 2014 Mar 13;123(11):1767CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Blackburn MR, Volmer JB, Thrasher JL, Zhong H, Crosby JR, Lee JJ, et al. Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction. J Exp Med. 2000;192(2):159–70.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kuo CY, Kohn DB. Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep. 2016;16(5):39.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ori Scott
    • 1
    • 2
  • Vy Hong-Diep Kim
    • 1
    • 2
  • Brenda Reid
    • 1
    • 2
  • Anne Pham-Huy
    • 3
  • Adelle R. Atkinson
    • 1
    • 2
  • Alessandro Aiuti
    • 4
    • 5
  • Eyal Grunebaum
    • 1
    • 2
    • 6
    Email author
  1. 1.Division of Immunology and AllergyHospital for Sick ChildrenTorontoCanada
  2. 2.Department of PediatricsUniversity of TorontoTorontoCanada
  3. 3.Division of Pediatric Infectious DiseasesChildren’s Hospital of Eastern OntarioOttawaCanada
  4. 4.San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric ImmunohematologyIRCCS San Raffaele Scientific InstituteMilanItaly
  5. 5.Vita Salute San Raffaele UniversityMilanItaly
  6. 6.Developmental and Stem Cell Biology ProgramHospital for Sick ChildrenTorontoCanada

Personalised recommendations