Journal of Clinical Immunology

, Volume 36, Issue 7, pp 667–676 | Cite as

Lymphoma Secondary to Congenital and Acquired Immunodeficiency Syndromes at a Turkish Pediatric Oncology Center

  • Hikmet G. TanyildizEmail author
  • Handan Dincaslan
  • Gulsan Yavuz
  • Emel Unal
  • Aydan Ikinciogulları
  • Figen Dogu
  • Nurdan Tacyildiz
Original Article


The prevalence of lymphoma in primary immunodeficiency cases and autoimmune diseases, as well as on a background of immunodeficiency following organ transplants, is increasing. The lymphoma treatment success rate is known to be a low prognosis. Our study aimed to emphasize the low survival rates in immunodeficient vs. immunocompetent lymphoma patients and also to investigate the effect of rituximab in patients with ataxia telangiectasia and other immunodeficiencies. We summarized the clinical characteristics and treatment results of 17 cases with primary immunodeficiency that developed non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) retrospectively. Seven patients were diagnosed with ataxia-telangiectasia, two with common variable immunodeficiency, two with selective IgA deficiency, one with X-related lymphoproliferative syndrome, one with Wiskott-Aldrich syndrome, one with Epstein-Barr virus-related lymphoproliferative syndrome, one with interleukin-2-inducible T-cell kinase (ITK) deficiency, and one with lymphoma developing after autoimmune lymphoproliferative syndrome (ALPS). One patient underwent a renal transplant. Of the nine males and eight females (aged 3–12 years, median = 7) that developed lymphoma, seven were diagnosed with HL and ten with NHL (seven B-cell, three T-cell). The NHL patients were started on the Berlin-Frankfurt-Münster, POG9317, LMB-96, or R-CHOP treatment protocols with reduced chemotherapy dosages. HL cases were started on the doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) and/or cyclophosphamide, vincristine, procarbazine, and prednisone (COPP) protocol, also with modified dosages. Importantly, all seven cases of HL are alive and in remission, while six of the ten NHL patients have died. Primary immunodeficiency is a strong predisposing factor for developing lymphoma. Low treatment success rates relative to other lymphomas and difficulties encountered during treatment indicate that new treatment agents are needed. While some success has been achieved by combining rituximab with lymphoma treatment protocols in B-NHL cases with primary immunodeficiency, the need for new treatment approaches for these patients remains critical.


Primary immunodeficiency Lymphoma Childhood 


Authors’ Contributions

HGT and NT designed the project. HGT wrote the manuscript. AI, FD, and NT reviewed the manuscript. The remaining authors provided clinical samples and data.

Compliance with Ethical Standard

Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Filipovich AH, Heinitz KJ, Robison LL, Frizzera G. The immunodeficiency cancer registry. A research resource. Am J Pediatr Hematol Oncol. 1987;9:183–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Elenitoba-Johnson KS, Jaffe ES. Lymphoproliferative disorders associated with congenital immunodeficiencies. Semin Diagn Pathol. 1997;14:35–47.PubMedGoogle Scholar
  3. 3.
    Filipovich AH, Mathur A, Kamat D, Kersey JH, Shapiro RS. Lymphoproliferative disorders and other tumors complicating immunodeficiency. Immunodeficiency. 1994;5:91–112.PubMedGoogle Scholar
  4. 4.
    Morrell D, Cromartie E, Swift M. Mortality and cancer incidence in 236 patients with ataxia telangiectasia. J Natl Cancer Inst. 1986;77:89–92.PubMedGoogle Scholar
  5. 5.
    Cunningham-Rundles C, Siegal FP, Cunningham-Rundles S, Lieberman P. Incidence of cancer in 98 patients with common variable immunodeficiency. J Clin Immunol. 1987;7:294–301.CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor AMR, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.PubMedGoogle Scholar
  7. 7.
    Turvey SE, Bonilla FA, Junker AK. Primary immunodeficiency diseases: a practical guide for clinicians. Postgrad Med J. 2009;85:660–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22:261–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Meyn MS. Chromosome instability syndromes: lessons for carcinogenesis. In Kaston MB, editor. Genetic instability and tumorigenesis. Current topics in microbiology and immunology; 1997. pp. 71–148.Google Scholar
  10. 10.
    Green AJ, Yates JR, Taylor AM, Biggs P, McGuire GM, McConville CM, et al. Severe microcephaly with normal intellectual development: the Nijmegen breakage syndrome. Arch Dis Child. 1995;73:431–4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Overberg-Schmidt U, Wegner RD, Baumgarten E, Günther A, Ebell W, Stein H, et al. Low-grade non-Hodgkin’s lymphoma after high-grade non-Hodgkin’s lymphoma in a child with ataxia telangiectasia. Cancer. 1994;73:1522–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Janic D, Dokmanovic L, Jovanovic N, Lazic J. T-cell acute lymphoblastic leukemia in a child with ataxia-telangiectasia: case report. J Pediatr Hematol Oncol. 2007;29:713–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Sharma LM, Kashyap R, Gupta S, Bhargava M. B-cell acute lymphoblastic leukemia in a child with ataxia-telangiectasia. Pediatr Hematol Oncol. 2008;5:473–6.CrossRefGoogle Scholar
  14. 14.
    Kastan MB. DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A Clowes Memorial Award Lecture. Mol Cancer Res. 2008;6:517–24.Google Scholar
  15. 15.
    Hecht F, Hecht BK. Chromosome changes connect immunodeficiency and cancer in ataxia-telangiectasia. Am J Pediatr Hematol Oncol. 1987;9:185–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Seidemann K, Henze G, Beck JD, Sauerbrey A, Kühl J, Mann G, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000;11:141–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Maclean KH, Kastan MB, Cleveland JL. Atm deficiency affects both apoptosis and proliferation to augment Myc-induced lymphomagenesis. Mol Cancer Res. 2007;5:705–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Shield JPH, Strobel S, Levinsky RJ, Morgan G. Immunodeficiency presenting as hypergammaglobulinemia with IgG2 subclass deficiency. Lancet. 1992;340:448–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Buckley RH. Breakthroughs in the understanding and therapy of primary immunodeficiency. Pediatr Clin North Am. 1994;41:665–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38:471–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–25.PubMedGoogle Scholar
  22. 22.
    Seidemann K, Tiemann M, Henze G, Sauerbrey A, Müller S, Reiter A. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: analysis of 19 patients from the BFM trials. Med Pediatr Oncol. 1999;33:536–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Sandoval C, Swift M. Treatment of lymphoid malignancies in patients with ataxia telangiectasia. Med Pediatr Oncol. 1998;31:491–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Shabbat S, Aharoni J, Sarid L, Ben-Harush M, Kapelushnik J. Rituximab as monotherapy and in addition to reduced CHOP in children with primary immunodeficiency and non-Hodgkin lymphoma. Pediatr Blood Cancer. 2009;52:664–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the committee on Hodgkin’s disease staging classification. Cancer Res. 1971;31:1860–1.PubMedGoogle Scholar
  26. 26.
    Murphy SB. Classification, staging and results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol. 1980;7:332–9.PubMedGoogle Scholar
  27. 27.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Kropshofer G, Wehl G, Klein-Franke A, Herbrecht R, Tilly H, Bouabdallah R, et al. B-cell lymphoma in a girl with ataxia telangiectasia (A-T) treated with rituximab monotherapy. Pediatr Blood Cancer. 2006;46:528–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Rossi G, Zecca M, Marchi A, de Stefano P, Sammarchi L, Locatelli F. Modified CHOP-chemotherapy plus rituximab for diffuse large B-cell lymphoma complicating ataxia-telangiectasia. Br J Haematol. 2003;120:369–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Sandlund JT, Hudson MM, Kennedy W, Onciu M, Kastan MB. Pilot study of modified LMB-based therapy for children with ataxia-telangiectasia and advanced stage high grade mature B-cell malignancies. Pediatr Blood Cancer. 2014;61:360–2.CrossRefPubMedGoogle Scholar
  31. 31.
    Perry III GS, Spector BD, Schuman LM, Mandel JS, Anderson VE, McHugh RB, et al. The Wiskott-Aldrich syndrome in the United States and Canada (1892–1979). J Pediatr. 1980;97:72–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78:635–44.CrossRefPubMedGoogle Scholar
  33. 33.
    Bosticardo M, Marangoni F, Aiuti A, Villa A, Grazia RM. Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood. 2009;113:6288–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Staub E, Groene J, Heinze M, Mennerich D, Roepcke S, Klaman I, et al. An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med. 2009;87:633–44.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Du S, Scuderi R, Malicki DM, Willert J, Bastian J, Weidner N. Hodgkin’s and non-Hodgkin’s lymphomas occurring in two brothers with Wiskott-Aldrich syndrome and review of the literature. Pediatr Dev Pathol. 2011;14:64–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Pasic S, Vujic D, Djuricic S, Jevtic D, Grujic B. Burkitt lymphoma-induced ileocolic intussusceptions in Wiskott-Aldrich syndrome. J Pediatr Hematol Oncol. 2006;28:48–50.PubMedGoogle Scholar
  37. 37.
    Cunningham-Rundles C, Siegal FP, Cunningham-Rundles S, Lieberman P. Incidence of cancer in 98 patients with common varied immunodeficiency. J Clin Immunol. 1987;7:294–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Emir S, Vezir E, Azkur D, Demir HA, Metin A. Characteristics of children with non-Hodgkin lymphoma associated with primary immune deficiency diseases: descriptions of five patients. Pediatr Hematol Oncol. 2013;30:544–53.CrossRefPubMedGoogle Scholar
  39. 39.
    Riex-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268:1347–9.CrossRefGoogle Scholar
  40. 40.
    Bleesing JJ. Autoimmune lymphoproliferative syndrome (ALPS). Curr Pharm Des. 2003;9:265–78.CrossRefPubMedGoogle Scholar
  41. 41.
    Clementi R, Dagna L, Dianzani U, Dupré L, Dianzani I, Ponzoni M, et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. N Engl J Med. 2004;351:1419–24.CrossRefPubMedGoogle Scholar
  42. 42.
    Poppema S, Maggio E, van den Berg A. Development of lymphoma in autoimmune lymphoproliferative syndrome (ALPS) and its relationship to Fas gene mutations. Leuk Lymphoma. 2004;45:423–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Rao VK, Straus SE. Causes and consequences of the autoimmune lymphoproliferative syndrome. Hematology. 2006;11:15–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Harris NL, Ferry JA, Swerdlow SH. Posttransplant lymphoproliferative disorders: summary of Society for Hematopathology Workshop. Semin Diagn Pathol. 1997;14:8–14.PubMedGoogle Scholar
  45. 45.
    Baker KS, DeFor TE, Burns LJ, Ramsay NK, Neglia JP, Robison LL. New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol. 2003;21:1352–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Gross TG, Steinbuch M, DeFor T, Shapiro RS, McGlave P, Ramsay NK, et al. B-cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome. Bone Marrow Transpl. 1999;23:251–8.CrossRefGoogle Scholar
  47. 47.
    Bhatia S, Ramsay NK, Steinbuch M, Dusenbery KE, Shapiro RS, Weisdorf DJ, et al. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87:3633–9.PubMedGoogle Scholar
  48. 48.
    Curtis RE, Travis LB, Rowlings PA, Socié G, Kingma DW, Banks PM, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94:2208–16.PubMedGoogle Scholar
  49. 49.
    Socie G, Curtis RE, Deeg HJ, Sobocinski KA, Filipovich AH, Travis LB, et al. New malignant diseases after allogeneic marrow transplantation for childhood acute leukemia. J Clin Oncol. 2000;18:348–57.PubMedGoogle Scholar
  50. 50.
    Robison LL, Stoker V, Frizzera G, Heinitz K, Meadows AT, Filipovich AH. Hodgkin’s disease in pediatric patients with naturally occurring immunodeficiency. Am J Pediatr Hematol Oncol. 1987;9:189–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Crnkovich MJ, Leopold K, Hoppe RT, Mauch PM. Stage I to IIB Hodgkin’s disease: the combined experience at Stanford University and the Joint Center for Radiation Therapy. J Clin Oncol. 1987;5:1041–9.PubMedGoogle Scholar
  52. 52.
    Sandoval C, Swift M. Hodgkin disease in ataxia-telangiectasia patients with poor outcomes. Med Pediatr Oncol. 2003;40:162–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Niehues T, Schellong G, Dörffel W, Bucsky P, Mann G, Körholz D, et al. Immunodeficiency and Hodgkin’s disease: treatment and outcome in the DAL HD78-90 and GPOH HD95 studies. Klin Padiatr. 2003;215:315–20.CrossRefPubMedGoogle Scholar
  54. 54.
    Meister MT, Voss S, Schwabe D. Treatment of EBV-associated nodular sclerosing Hodgkin lymphoma in a patient with ataxia telangiectasia with brentuximab vedotin and reduced COPP plus rituximab. Pediatr Blood Cancer. 2015;62:2018–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Duraisingham SS, Buckland M, Dempster J, Lorenzo L, Grigoriadou S, Longhurst HJ. Primary vs. secondary antibody deficiency: clinical features and infection outcomes of immunoglobulin replacement. PLoS One. 2014;9:e100324.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol. 2009;145:709–27.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wobser M, Kerstan A, Kneitz H, Goebeler M, Kunzmann V, Rosenwald A, et al. Primary cutaneous marginal zone lymphoma with sequential development of nodal marginal zone lymphoma in a patient with selective immunoglobulin A deficiency. J Cutan Pathol. 2013;40:1035–41.CrossRefPubMedGoogle Scholar
  58. 58.
    Ott MM, Ott G, Klinker H, Trunk MJ, Katzenberger T, Müller-Hermelink HK. Abdominal T-cell non-Hodgkin’s lymphoma of the gamma/delta type in a patient with selective immunoglobulin A deficiency. Am J Surg Pathol. 1998;22:500–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen Y, Jin M, Zhao W, Li S, Wang X, Cai S, et al. DICER1-negative pleuropulmonary blastoma in a patient with selective IgA deficiency. Pediatr Blood Cancer. 2016;63:757–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Ghosh S, Bienemann K, Boztug K, Borkhardt A. Interleukin-2-inducible T-cell kinase (ITK) deficiency—clinical and molecular aspects. J Clin Immunol. 2014;34:892–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gross TG, Filipovich AH, Conley ME, Pracher E, Schmiegelow K, Verdirame JD, et al. Cure of X-linked lymphoproliferative disease (XLP) with allogeneic hematopoietic stem cell transplantation (HSCT): report from the XLP registry. Bone Marrow Transpl. 1996;17:741–4.Google Scholar
  62. 62.
    Zhu J, Zhang Y, Zhen ZJ, Chen Y, Wang J, Cai RQ, et al. Lymphoma and cerebral vasculitis in association with X-linked lymphoproliferative disease. Chin J Cancer. 2013;32:673.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, Heath PT, Steward CG, Smith O, O’Meara A, Kerrigan H, Mahlaoui N, Cavazzana-Calvo M, Fischer A, Moshous D, Blanche S, Pachlopnik Schmid J, Latour S, de Saint-Basile G, Albert M, Notheis G, Rieber N, Strahm B, Ritterbusch H, Lankester A, Hartwig NG, Meyts I, Plebani A, Soresina A, Finocchi A, Pignata C, Cirillo E, Bonanomi S, Peters C, Kalwak K, Pasic S, Sedlacek P, Jazbec J, Kanegane H, Nichols KE, Hanson IC, Kapoor N, Haddad E, Cowan M, Choo S, Smart J, Arkwright PD, Gaspar HB. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117:53–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hikmet G. Tanyildiz
    • 1
    Email author
  • Handan Dincaslan
    • 1
  • Gulsan Yavuz
    • 1
  • Emel Unal
    • 1
  • Aydan Ikinciogulları
    • 2
  • Figen Dogu
    • 2
  • Nurdan Tacyildiz
    • 1
  1. 1.Department of Pediatric OncologyAnkara University Faculty of MedicineAnkaraTurkey
  2. 2.Department of Pediatric ImmunologyAnkara University Faculty of MedicineAnkaraTurkey

Personalised recommendations