Advertisement

Journal of Clinical Immunology

, Volume 36, Supplement 1, pp 57–67 | Cite as

Autoimmunity and Primary Immunodeficiency Disorders

  • Eric Allenspach
  • Troy R. Torgerson
Article

Abstract

Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These “immune dysregulation” disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.

Keywords

CTLA4—cytotoxic T lymphocyte-associated protein 4 CVID—common variable immune deficiency IL-10—interleukin-10 IPEX—immune dysregulation, polyendocrinopathy, enteropathy, X-linked NF-κB—nuclear factor-kappa binding PIDD—primary immunodeficiency disorders STAT—signal transducer and activator of transcription Treg—regulatory T cell 

References

  1. 1.
    Hertzog PJ. Overview. Type I interferons as primers, activators and inhibitors of innate and adaptive immune responses. Immunol Cell Biol. 2012;90:471–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Furze RC, Rankin SM. Neutrophil mobilization and clearance in the bone marrow. Immunology. 2008;125(3):281–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 2006;129(6):1673–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Hochreiter-Hufford A, Ravichandran KS. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol. 2013;5(1):a008748.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pisetsky DS. The danger of sex and death in Scarf1 −/− autoimmune mice. Nat Immunol. 2013;14:888–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199(2):265–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Steinsson K, Erlendsson K, Valdimarsson H. Successful plasma infusion treatment of a patient with C2 deficiency and systemic lupus erythematosus: clinical experience over forty-five months. Arthritis Rheum. 1989;32:906–13.PubMedGoogle Scholar
  8. 8.
    Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol. 2007;148(1):79–84.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Samejima K, Earnshaw WC. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 2005;6:677–88.CrossRefPubMedGoogle Scholar
  10. 10.
    Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28(4):313–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39(9):1065–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet. 2007;80(4):811–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fye JM, Orebaugh CD, Coffin SR, Hollis T, Perrino FW. Dominant mutations of the TREX1 exonuclease gene in lupus and Aicardi-Goutières syndrome. J Biol Chem. 2011;286(37):32373–82.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46(5):503–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miner JJ, Diamond MS. MDA5 and autoimmune disease. Nat Genet. 2014;46(5):418–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507–18.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Campbell DJ. Control of regulatory T cell migration, function, and homeostasis. J Immunol. 2015;195(6):2507–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Attridge K, Walker LS. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev. 2014;259(1):23–39.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Palomares O, Martín-Fontecha M, Lauener R, Traidl-Hoffmann C, Cavkaytar O, Akdis M, et al. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun. 2014;15(8):511–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006;116(6):1713–22.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fuchizawa T, Adachi Y, Ito Y, Higashiyama H, Kanegane H, Futatani T, et al. Developmental changes of FOXP3-expressing CD4+CD25+ regulatory T cells and their impairment in patients with FOXP3 gene mutations. Clin Immunol. 2007;125(3):237–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007;120(4):744–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Goudy K, Aydin D, Barzaghi F, Gambineri E, Vignoli M, Ciullini Mannurita S, et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol. 2013;146(3):248–61.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119(2):482–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Kanai T, Jenks J, Nadeau KC. The STAT5b pathway defect and autoimmunity. Front Immunol. 2012;3:234.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Murugan D, Albert MH, Langemeier J, Bohne J, Puchalka J, Järvinen PM, et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol. 2014;34(3):331–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang W, August A. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation. J Leukoc Biol. 2015;97(3):477–85.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Coutinho A, Caramalho I, Seixas E, Demengeot J. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection. Curr Top Microbiol Immunol. 2005;293:43–71.PubMedGoogle Scholar
  34. 34.
    Lechouane F, Bonaud A, Delpy L, Casola S, Oruc Z, Chemin G, et al. B-cell receptor signal strength influences terminal differentiation. Eur J Immunol. 2013;43(3):619–28.CrossRefPubMedGoogle Scholar
  35. 35.
    Habib T, Funk A, Rieck M, Brahmandam A, Dai X, Panigrahi AK, et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J Immunol. 2012;188(1):487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21(2):223–44.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C, Nitschke P, et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J Clin Invest. 2014;124(9):3923–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133(5):1458–62. 1462.e1-7.CrossRefPubMedGoogle Scholar
  42. 42.
    Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477–85.e1.CrossRefPubMedGoogle Scholar
  43. 43.
    Greil J, Rausch T, Giese T, Bandapalli OR, Daniel V, Bekeredjian-Ding I, et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131(5):1376–83.e3.CrossRefPubMedGoogle Scholar
  44. 44.
    Torres JM, Martinez-Barricarte R, García-Gómez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124(12):5239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pannicke U, Baumann B, Fuchs S, Henneke P, Rensing-Ehl A, Rizzi M, et al. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med. 2013;369(26):2504–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Mousallem T, Yang J, Urban TJ, Wang H, Adeli M, Parrott RE, et al. A nonsense mutation in IKBKB causes combined immunodeficiency. Blood. 2014;124(13):2046–50.Google Scholar
  47. 47.
    Pai SY, Levy O, Jabara HH, Glickman JN, Stoler-Barak L, Sachs J, et al. Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-kappaB essential modulator deficiency. J Allergy Clin Immunol. 2008;122(6):1113–8.Google Scholar
  48. 48.
    Mizukami T, Obara M, Nishikomori R, Kawai T, Tahara Y, Sameshima N, et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol. 2012;32(1):39–49.Google Scholar
  49. 49.
    Courtois G, Smahi A, Reichenbach J, Döffinger R, Cancrini C, Bonnet M, et al. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 2003;112(7):1108–15.Google Scholar
  50. 50.
    Schimke LF, Rieber N, Rylaarsdam S, Cabral-Marques O, Hubbard N, Puel A, et al. A novel gain-of-function IKBA mutation underlies ectodermal dysplasia with immunodeficiency and polyendocrinopathy. J Clin Immunol. 2013;3(6):1088–99.Google Scholar
  51. 51.
    Fliegauf M, Bryant VL, Frede N, Slade C, Woon ST, Lehnert K, et al. Haploinsufficiency of the NF-kB1 Subunit p50 in Common Variable Immunodeficiency. Am J Hum Genet. 2015;97(3):389–403.Google Scholar
  52. 52.
    Chen K, Coonrod EM, Kumánovics A, Franks ZF, Durtschi JD, Margraf RL, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93(5):812–24.Google Scholar
  53. 53.
    Lee CE, Fulcher DA, Whittle B, Chand R, Fewings N, Field M, et al. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood. 2014 Nov 6;124(19):2964–72.Google Scholar
  54. 54.
    Stein BL, Oh ST, Berenzon D, Hobbs GS, Kremyanskaya M, Rampal RK, et al. Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of JAK2 V617F. J Clin Oncol. 2015. doi: 10.1200/JCO.2015.61.6474.
  55. 55.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377(6544):65–8.Google Scholar
  56. 56.
    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.Google Scholar
  57. 57.
    Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramírez-Alejo N, Kilic SS, et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641–62.Google Scholar
  58. 58.
    Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26(6):454–70.Google Scholar
  59. 59.
    Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23.Google Scholar
  60. 60.
    Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A. 2013;110(8):3053–8.Google Scholar
  61. 61.
    Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Lango Allen H, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–4.Google Scholar
  62. 62.
    Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9.Google Scholar
  63. 63.
    Lechner K, Jäger U. How I treat autoimmune hemolytic anemias in adults. Blood. 2010;116(11):1831–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Akpek G, McAneny D, Weintraub L. Comparative response to splenectomy in Coombs-positive auto-immune hemolytic anemia with or without associated disease. Am J Hematol. 1999;61:98–102.CrossRefPubMedGoogle Scholar
  65. 65.
    Lum LG, Tubergen DG, Corash L, Blaese RM. Splenectomy in the management of the thrombocytopenia of the Wiskott-Aldrich syndrome. N Engl J Med. 1980;302(16):892–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Albert MH, Bittner TC, Nonoyama S, Notarangelo LD, Burns S, Imai K, et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood. 2010;115(16):3231–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Cuker A, Neunert CE. How I treat refractory immune thrombocytopenia. Blood. 2016 Apr 6. pii: Blood-2016-03-603365. [Epub ahead of print]Google Scholar
  68. 68.
    Reboursiere E, Fouques H, Maigne G, Johnson H, Chantepie S, Gac AC, Reman O, Macro M, Benabed K, Troussard X, Damaj G, Cheze S. Rituximab salvage therapy in adults with immune thrombocytopenia: retrospective study on efficacy and safety profiles. Int J Hematol. 2016 Apr 4. [Epub ahead of print]Google Scholar
  69. 69.
    Ay Y, Karapinar TH, Oymak Y, Toret E, Demirag B, Ince D, Ozcan E, Moueminoglou N, Koker SA, Vergin C. Retrospective analysis of rituximab therapy and splenectomy in childhood chronic and refractory immune thrombocytopenic purpura. Blood Coagul Fibrinolysis. 2015 Dec 11. [Epub ahead of print]Google Scholar
  70. 70.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bates CA, Ellison MC, Lynch DA, Cool CD, Brown KK, Routes JM. Granulomatous-lymphocytic lung disease shortens survival in common variable immunodeficiency. J Allergy Clin Immunol. 2004;114(2):415–21.CrossRefPubMedGoogle Scholar
  72. 72.
    Chase NM, Verbsky JW, Hintermeyer MK, Waukau JK, Tomita-Mitchell A, Casper JT, et al. Use of combination chemotherapy for treatment of granulomatous and lymphocytic interstitial lung disease (GLILD) in patients with common variable immunodeficiency (CVID). J Clin Immunol. 2013;33(1):30–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lucas M, Lee M, Lortan J, Lopez-Granados E, Misbah S, Chapel H. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125(6):1354–60. e4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Washington School of MedicineSeattleUSA
  2. 2.Seattle Children’s Research InstituteSeattleUSA

Personalised recommendations