Advertisement

Journal of Clinical Immunology

, Volume 36, Supplement 1, pp 95–99 | Cite as

The FcγR/IgG Interaction as Target for the Treatment of Autoimmune Diseases

  • Peter Sondermann
Article

Abstract

FcγRs are a crucial component of the antibody response as they mediate the cellular effector functions in response to IgG-containing immune complexes (ICs). Therefore, they also play a central role in the pathogenesis of autoimmune diseases which offers an attractive option to specifically target this class of molecules and their interaction with IgG for treatment of immune disorders. In detail, two strategies are discussed in this article. SM101, a soluble FcγR that is already in clinical development competes with the interaction of IgG with membrane FcγRs. Oppositely, SM201 recruits the inhibitory FcγRIIB for a broad down-modulation of the immune system. The presented approaches for the treatment of autoimmune diseases have the potential be more efficacious with fewer side effects than the currently used therapeutic options.

Keywords

IgG Fc-gamma receptor FcγR soluble FcγR FcγRIIB SM101 SM201 

Notes

Acknowledgments

The author likes to thank Nicole Rieth for critical reading of the manuscript.

References

  1. 1.
    Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014. doi: 10.3389/fimmu.2014.00520.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt RE, Gessner JE. Fc receptors and their interaction with complement in autoimmunity. Immunol Lett. 2005;100:56–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Pricop L, Redecha P, Teillaud J-L, Frey J, Fridman WH, Sautes-Fridman C, et al. Differential modulation of stimulatory and inhibitory Fc receptors on human monocytes by Th1 and Th2 cytokines. J Immunol. 2001;166:531–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol. 2002;2:580–92.PubMedGoogle Scholar
  7. 7.
    van de Winkel JG, Capel PJ. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today. 1993;14:215–21.CrossRefPubMedGoogle Scholar
  8. 8.
    de la Salle C, Esposito-Farese M-E, Bieber T, Moncuit J, Morales M, Wollenberg A, et al. Release of soluble FcgammaRII/CD32 molecules by human Langerhans cells: a subtle balance between shedding and secretion? J Investig Dermatol. 1992;99:15S–7S.CrossRefPubMedGoogle Scholar
  9. 9.
    Rappaport EF, Cassel DL, Walterhouse DO, McKenzie SE, Surrey S, Keller MA, et al. A soluble form of the human Fc receptor Fc gamma RIIA: cloning, transcript analysis and detection. Exp Hematol. 1993;21:689–96.PubMedGoogle Scholar
  10. 10.
    Calvo CF, Watanabe S, Mètivier D, Senik A. Human monocyte cell line (U937) releases suppressive IgG-binding factor(s). Eur J Immunol. 1986;16:25–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Bazil V, Strominger JL. Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. J Immunol. 1994;152:1314–22.PubMedGoogle Scholar
  12. 12.
    Fridman WH, Golstein P. Immunoglobulin-binding factor present on and produced by thymus-processed lymphocytes (T cells). Cell Immunol. 1974;11:442–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Ierino FL, Powell MS, McKenzie IF, Hogarth PM. Recombinant soluble human Fc gamma RII: production, characterization, and inhibition of the Arthus reaction. J Exp Med. 1993;178:1617–28.CrossRefPubMedGoogle Scholar
  14. 14.
    Varin N, Sautès C, Galinha A, Even J, Hogarth PM, Fridman WH. Recombinant soluble receptors for the Fcγ portion inhibit antibody productionin vitro. Eur J Immunol. 1989;19:2263–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Sautès C, Galinha A, Bouchard C, Mazières N, Spagnoli R, Fridman WH. Recombinant soluble Fcγ receptors: production, purification and biological activities. J Chromatogr B Biomed Sci Appl. 1994;662:197–207.CrossRefGoogle Scholar
  16. 16.
    Watanabe H, Sherris D, Gilkeson GS. Soluble CD16 in the treatment of murine lupus nephritis. Clin Immunol Immunopathol. 1998;88:91–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Galon J, Bouchard C, Fridman WH, Sautès C. Ligands and biological activities of soluble Fcγ receptors. Immunol Lett. 1995;44:175–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Sondermann P, Jacob U. Human Fc gamma receptor IIb expressed in Escherichia coli reveals IgG binding capability. Biol Chem. 1999;380:717–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Sondermann P, Jacob U, Kutscher C, Frey J. Characterization and crystallization of soluble human Fcγ receptor II (CD32) isoforms produced in insect cells. Biochemistry. 1999;38:8469–77.CrossRefPubMedGoogle Scholar
  20. 20.
    Maenaka K, van der Merwe PA, Stuart DI, Jones EY, Sondermann P. The human low affinity Fcgamma receptors IIa, IIb, and III bind IgG with fast kinetics and distinct thermodynamic properties. J Biol Chem. 2001;276:44,898–904.CrossRefGoogle Scholar
  21. 21.
    Sondermann P, Huber R, Jacob U. Crystal structure of the soluble form of the human Fcgamma -receptor IIb: a new member of the immunoglobulin superfamily at 1.7 A resolution. EMBO J. 1999;18:1095–103.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-Å crystal structure of the human IgG1 Fc ragment–FcγRIII complex. Nature. 2000;406:267–73.Google Scholar
  23. 23.
    Werwitzke S, Trick D, Sondermann P, Kamino K, Schlegelberger B, Kniesch K, et al. Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fc receptor II (CD32). Ann Rheum Dis. 2008;67:154–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Magnusson SE, Andrén M, Nilsson KE, Sondermann P, Jacob U, Kleinau S. Amelioration of collagen-induced arthritis by human recombinant soluble FcγRIIb. Clin Immunol. 2008;127:225–33.CrossRefPubMedGoogle Scholar
  25. 25.
    Iwata H, Pipi E, Möckel N, Sondermann P, Vorobyev A, Beek NV, et al. Recombinant soluble CD32 suppresses disease progression in experimental epidermolysis bullosa acquisita. J Investig Dermatol. 2015;135:916–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Smith KGC, Clatworthy MR. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10:328–43.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tillmanns S, Sondermann P, Schrödter A, Schubert C, Nilius S, Buckel P. Soluble Fc-gamma IIb receptor SM101 as potential therapy in autoimmune diseases – results from a Phase 0/Ia clinical trial in healthy volunteers. Ann Rheum Dis. 2011;70:618.Google Scholar
  28. 28.
    Konstaninova TS, Leonidovna IV, Hellmann A, Kyrcz-Krzemien S, Tillmanns S, Sondermann P, et al. Interim results from a phase Ib/IIa clinical trial with the soluble Fc-gamma IIb receptor SM101 for the treatment of primary immune thrombocytopenia. Blood. 2012;120:3388.Google Scholar
  29. 29.
    Tillmanns S, Kolligs C, DP D’C, Doria A, Hachulla E, Voll RE, et al. SM101, a novel recombinant, soluble, human Fc gamma IIb receptor, in the treatment of systemic lupus erythematosus: results of a double-blind, placebo-controlled multicenter study. Arthritis Rheum. 2014;66:S1238.Google Scholar
  30. 30.
    Idusogie EE, Presta LG, Gazzano-Santoro H, Totpal K, Wong PY, Ultsch M, et al. Mapping of the C1q binding site on Rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol. 2000;164:4178–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Weflen AW, Baier N, Tang Q-J, Van den Hof M, Blumberg RS, Lencer WI, et al. Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules. Mol Biol Cell. 2013;24:2398–405.Google Scholar
  33. 33.
    Sondermann P, Oosthuizen V. X-ray crystallographic studies of IgG-FcγR interactions. Biochem Soc Trans. 2002;30:481–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen W, Nordstrom J, Burke S, Shah K, Ciccarone V, Li H, et al. Development of human B-lymphocyte targeted bi-specific DART® molecules for the treatment of autoimmune disorders (THER5P. 830). J Immunol. 2014;192(1 Supplement):200–9.Google Scholar
  35. 35.
    Chu SY, Yeter K, Kotha R, Pong E, Miranda Y, Phung S, et al. Suppression of rheumatoid arthritis B cells by XmAb5871, an anti-CD19 antibody that coengages B cell antigen receptor complex and Fcγ receptor IIb inhibitory receptor. Arthritis Rheum. 2014;66:1153–64.CrossRefGoogle Scholar
  36. 36.
    Rieth N, Carle A, Müller M, Meer DT, Direnberger C, Pohl T, et al. Characterization of SM201, an anti-hFcγRIIB antibody not interfering with ligand binding that mediates immune complex dependent inhibition of B cells. Immunol Lett. 2014;160:145–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity. 1999;10:753–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Xiang Z, Cutler AJ, Brownlie RJ, Fairfax K, Lawlor KE, Severinson E, et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat Immunol. 2007;8:419–29.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.SuppreMol GmbHMartinsriedGermany

Personalised recommendations