Advertisement

Journal of Clinical Immunology

, Volume 36, Supplement 1, pp 68–75 | Cite as

Next Generation Sequencing Data Analysis in Primary Immunodeficiency Disorders – Future Directions

  • Mingyan Fang
  • Hassan Abolhassani
  • Che Kang Lim
  • Jianguo Zhang
  • Lennart HammarströmEmail author
Article

Abstract

Primary immunodeficiency diseases (PIDs) comprise a group of highly heterogeneous immune system diseases and around 300 forms of PID have been described to date. Next Generation Sequencing (NGS) has recently become an increasingly used approach for gene identification and molecular diagnosis of human diseases. Herein we summarize the practical considerations for the interpretation of NGS data and the techniques for searching disease-related PID genes, and suggest future directions for research in this field.

Keywords

Primary immunodeficiency (PIDs) next generation sequencing candidate gene screening 

Abbreviations

NGS

Next generation sequencing

PID

Primary immunodeficiency diseases

MDs

Mendelian disorders

WGS

Whole genome sequencing

WES

Whole exome sequencing

QC

Quality control

Notes

Acknowledgments

We appreciate the participation of the patients and their families; without their support, this work would not have been possible.

Compliance with Ethical Standards

Authorship Contributions

M.F. performed bioinformatics analysis, results interpretation, made the figures and wrote the paper; H.A. performed experiments, analyzed results and wrote the paper; C.K. analyzed results and wrote the paper. J. Z. performed the WES and L.H. designed the project and edited the paper.

Disclosure of Conflicts of Interest

None.

References

  1. 1.
    Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, et al. ICON: the early diagnosis of congenital immunodeficiencies. Journal of Clinical Immunology. 2014;34(4):398–424.PubMedGoogle Scholar
  2. 2.
    Joshi AY, Iyer VN, Hagan JB, St Sauver JL, Boyce TG. Incidence and temporal trends of primary immunodeficiency: a population-based cohort study. Mayo Clinic Proceedings. 2009;84(1):16–22.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clinical and Experimental Immunology. 2000;120(2):225–31.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS ONE. 2009;4(4):e5234.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bousfiha AA, Jeddane L, Ailal F, Benhsaien I, Mahlaoui N, Casanova JL, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. Journal of Clinical Immunology. 2013;33(1):1–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. Journal of Clinical Immunology. 2015.Google Scholar
  7. 7.
    Bousfiha A, Jeddane L, Al-Herz W, Ailal F, Casanova JL, Chatila T, et al. The 2015 IUIS phenotypic classification for primary immunodeficiencies. Journal of Clinical Immunology. 2015;35(8):727–38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Itan Y, Casanova JL. Novel primary immunodeficiency candidate genes predicted by the human gene connectome. Frontiers in Immunology. 2015;6:142.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Germeshausen M, Zeidler C, Stuhrmann M, Lanciotti M, Ballmaier M, Welte K. Digenic mutations in severe congenital neutropenia. Haematologica. 2010;95(7):1207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang K, Chandrakasan S, Chapman H, Valencia CA, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 2014;124(8):1331–4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science (New York, NY). 2010;328(5978):636–9.CrossRefGoogle Scholar
  13. 13.
    Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain: a Journal of Neurology. 2010;133(Pt 12):3510–8.CrossRefGoogle Scholar
  14. 14.
    Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nature Genetics. 2010;42(1):30–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. The New England Journal of Medicine. 2010;362(13):1181–91.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, Busiah K, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS ONE. 2010;5(10):e13630.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Notarangelo LD. Primary immunodeficiencies. The Journal of Allergy and Clinical Immunology. 2010;125(2 Suppl 2):S182–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. The Journal of Allergy and Clinical Immunology. 2015.Google Scholar
  19. 19.
    Abolhassani H, Cheraghi T, Rezaei N, Aghamohammadi A, Hammarstrom L. Common variable immunodeficiency or late-onset combined immunodeficiency: A new hypomorphic JAK3 patient and review of the literature. Journal of Investigational Allergology & Clinical Immunology. 2015;25(3):218–20.Google Scholar
  20. 20.
    Alkhairy OK, Abolhassani H, Rezaei N, Fang M, Andersen KK, Chavoshzadeh Z, et al. Spectrum of Phenotypes Associated with Mutations in LRBA. Journal of clinical immunology. 2015.Google Scholar
  21. 21.
    Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, et al. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. The Journal of Allergy and Clinical Immunology. 2014;134(6):1375–80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alkhairy OK, Rezaei N, Graham RR, Abolhassani H, Borte S, Hultenby K, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. The Journal of allergy and clinical immunology. 2015;135(5):1380–4.e1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Volk T, Pannicke U, Reisli I, Bulashevska A, Ritter J, Bjorkman A, et al. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Human Molecular Genetics. 2015;24(25):7361–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Salzer U, Bacchelli C, Buckridge S, Pan-Hammarstrom Q, Jennings S, Lougaris V, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113(9):1967–76.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G, Lee AT, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nature Genetics. 2010;42(9):777–80.CrossRefPubMedGoogle Scholar
  26. 26.
    McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics (Oxford, England). 2010;26(16):2069–70.CrossRefGoogle Scholar
  27. 27.
    Guo Y, Zhao S, Lehmann BD, Sheng Q, Shaver TM, Stricker TP, et al. Detection of internal exon deletion with exon del. BMC Bioinformatics. 2014;15:332.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shi Y, Majewski J. FishingCNV: a graphical software package for detecting rare copy number variations in exome-sequencing data. Bioinformatics. 2013;29(11):1461–2. Google Scholar
  29. 29.
    Keerthikumar S, Raju R, Kandasamy K, Hijikata A, Ramabadran S, Balakrishnan L, et al. RAPID: resource of Asian primary immunodeficiency diseases. Nucleic Acids Research. 2009;37(Database issue):D863–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. The Journal of Experimental Medicine. 2014;211(11):2137–49.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lamperti C, Fang M, Invernizzi F, Liu X, Wang H, Zhang Q, et al. A novel homozygous mutation in SUCLA2 gene identified by exome sequencing. Molecular Genetics and Metabolism. 2012;107(3):403–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hu H, Roach JC, Coon H, Guthery SL, Voelkerding KV, Margraf RL, et al. A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nature Biotechnology. 2014;32(7):663–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for Germline Variant Calling and Somatic Mutation Detection. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al]. 2013;44:15.4.1–.4.7.Google Scholar
  34. 34.
    Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nature Reviews Genetics. 2012;13(8):523–36.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang H. Robinson PN. Phenolyzer: Phenotype-Based Prioritization of Candidate Genes for Human Diseases. 2015;12(9):841–3.Google Scholar
  36. 36.
    Javed A, Agrawal S, Ng PC. Phen-gen: combining phenotype and genotype to analyze rare disorders. Nature Methods. 2014;11(9):935–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Medical Genomics. 2014;7:64.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Velez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proceedings of the National Academy Of Sciences of the United States Of America. 2015;112(44):13615–20.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vorechovsky I, Luo L, Hertz JM, Froland SS, Klemola T, Fiorini M, et al. Mutation pattern in the Bruton’s tyrosine kinase gene in 26 unrelated patients with X-linked agammaglobulinemia. Human Mutation. 1997;9(5):418–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Conley ME, Mathias D, Treadaway J, Minegishi Y, Rohrer J. Mutations in btk in patients with presumed X-linked agammaglobulinemia. American Journal of Human Genetics. 1998;62(5):1034–43.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Holinski-Feder E, Weiss M, Brandau O, Jedele KB, Nore B, Backesjo CM, et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics. 1998;101(2):276–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Valiaho J, Faisal I, Ortutay C, Smith CI, Vihinen M. Characterization of all possible single-nucleotide change caused amino acid substitutions in the kinase domain of Bruton tyrosine kinase. Human Mutation. 2015;36(6):638–47.CrossRefPubMedGoogle Scholar
  43. 43.
    Zeng H, Tao Y, Chen X, Zeng P, Wang B, Wei R, et al. Primary immunodeficiency in South China: clinical features and a genetic subanalysis of 138 children. Journal of Investigational Allergology & Clinical Immunology. 2013;23(5):302–8.Google Scholar
  44. 44.
    Lee WI, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105(5):1881–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, et al. Performance comparison of exome DNA sequencing technologies. Nature Biotechnology. 2011;29(10):908–14.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion MedicineKarolinska University Hospital HuddingeStockholmSweden
  2. 2.BGI-ShenzhenShenzhenChina
  3. 3.Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical CenterTehran University of Medical SciencesTehranIran
  4. 4.Department of Clinical ResearchSingapore General HospitalSingaporeSingapore

Personalised recommendations