Journal of Clinical Immunology

, Volume 35, Issue 3, pp 289–301 | Cite as

Reduced Frequencies of Polyfunctional CMV-Specific T Cell Responses in Infants with Congenital CMV Infection

  • Laura Gibson
  • Constance M. Barysauskas
  • Margaret McManus
  • Sheryl Dooley
  • Daniele Lilleri
  • Donna Fisher
  • Tumul Srivastava
  • Don J. Diamond
  • Katherine Luzuriaga
Original Research



CMV infection remains a priority for vaccine development. Vaccination of infants could modify congenital infection and provide lifetime immunity. Properties of CMV-specific T cells associated with control of viral replication in early life have not been fully defined.


CMV-specific CD4 and CD8 T cell responses were investigated in infants with congenital CMV infection and compared to adults with primary or chronic infection. PBMC were stimulated with UL83 (pp65) or UL122 (IE-2) peptide pools then stained with antibodies to markers of T cell subset (CD4 or CD8), phenotype (CD45RA, CCR7), or function (MIP1β, CD107, IFNγ, IL2) for flow cytometry analysis.


Detection of CMV pp65-specific CD4 T cells was less common in infants than adults. Responder cells were primarily effector memory (EM, CD45RA-CCR7-) in adults, but mixed memory subsets in infants. Detection of CMV pp65-specific CD8 T cells did not differ between the groups, but infants had lower frequencies of total responding cells and of MIP1β- or CD107-expressing cells. Responder cells were EM or effector memory RA (CD45RA + CCR7-) in all groups. Polyfunctional T cells were less commonly detected in infants than adults. Responses to IE-2 were detected in adults but not infants. All infants had detectable circulating CMV DNA at initial study (versus 60 % of adults with primary infection) despite longer duration of CMV infection.


Reduced frequencies and altered functional profile of CMV-specific CD4 and CD8 T cell responses were detected in infants compared to adults, and were associated with persistent CMV DNA in peripheral blood.


Cytomegalovirus congenital neonate host immunity T cells polyfunction 


  1. 1.
    Stratton KR, Durch JS, Lawrence RS. Vaccines for the 21st Century: A Tool for Decisionmaking. Available at: Stratton KR, Durch JS, Lawrence RS, editors. Washington, DC: National Academies Press; 2000.
  2. 2.
    Cannon MJ. Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol. 2009;46 Suppl 4:S6–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Adler SP. Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med. 1989;321(19):1290–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Adler SP. Cytomegalovirus and child day care: risk factors for maternal infection. Pediatr Infect Dis J. 1991;10(8):590–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Noyola DE, Demmler GJ, Williamson WD, Griesser C, Sellers S, Llorente A, et al. Cytomegalovirus urinary excretion and long term outcome in children with congenital cytomegalovirus infection. Congenital CMV Longitudinal Study Group. Pediatr Infect Dis J. 2000;19(6):505–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Krause PR, Bialek SR, Boppana SB, Griffiths PD, Laughlin CA, Ljungman P, et al. Priorities for CMV vaccine development. Vaccine. 2013.Google Scholar
  7. 7.
    Prendergast AJ, Klenerman P, Goulder PJ. The impact of differential antiviral immunity in children and adults. Nat Rev Immunol. 2012;12(9):636–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Lanzieri TM, Bialek SR, Ortega-Sanchez IR, Gambhir M. Modeling the potential impact of vaccination on the epidemiology of congenital cytomegalovirus infection. Vaccine. 2014.Google Scholar
  9. 9.
    Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis. 2012;12(4):290–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Heineman TC, Schleiss M, Bernstein DI, Spaete RR, Yan L, Duke G, et al. A phase 1 study of 4 live, recombinant human cytomegalovirus Towne/Toledo chimeric vaccines. J Infect Dis. 2006;193(10):1350–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Schleiss MR. Cytomegalovirus in the neonate: immune correlates of infection and protection. Clin Dev Immunol. 2013;2013:501801.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wussow F, Chiuppesi F, Martinez J, Campo J, Johnson E, Flechsig C, et al. Human cytomegalovirus vaccine based on the envelope gH/gL pentamer complex. PLoS Pathog. 2014;10(11):e1004524.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Zhong J, Khanna R. Delineating the role of CD4+ T cells in the activation of human cytomegalovirus-specific immune responses following immunization with Ad-gBCMVpoly vaccine: implications for vaccination of immunocompromised individuals. J Gen Virol. 2010;91(Pt 12):2994–3001.CrossRefPubMedGoogle Scholar
  14. 14.
    Renzette N, Gibson L, Jensen JD, Kowalik TF. Human cytomegalovirus intrahost evolution-a new avenue for understanding and controlling herpesvirus infections. Curr Opin Virol. 2014;8:109–15.CrossRefPubMedGoogle Scholar
  15. 15.
    La Rosa C, Diamond DJ. The immune response to human CMV. Futur Virol. 2012;7(3):279–93.CrossRefGoogle Scholar
  16. 16.
    Bohm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, et al. Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol. 2008;197(2):135–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Jeitziner SM, Walton SM, Torti N, Oxenius A. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection. Eur J Immunol. 2013;43(11):2886–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Bunde T, Kirchner A, Hoffmeister B, Habedank D, Hetzer R, Cherepnev G, et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med. 2005;201(7):1031–6.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood. 2003;101(7):2686–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Sacre K, Carcelain G, Cassoux N, Fillet AM, Costagliola D, Vittecoq D, et al. Repertoire, diversity, and differentiation of specific CD8 T cells are associated with immune protection against human cytomegalovirus disease. J Exp Med. 2005;201(12):1999–2010.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Luo XH, Huang XJ, Liu KY, Xu LP, Liu DH. Protective immunity transferred by infusion of cytomegalovirus-specific CD8(+) T cells within donor grafts: its associations with cytomegalovirus reactivation following unmanipulated allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(7):994–1004.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen SF, Tu WW, Sharp MA, Tongson EC, He XS, Greenberg HB, et al. Antiviral CD8 T cells in the control of primary human cytomegalovirus infection in early childhood. J Infect Dis. 2004;189(9):1619–27.CrossRefPubMedGoogle Scholar
  23. 23.
    Gibson L, Dooley S, Trzmielina S, Somasundaran M, Fisher D, Revello MG, et al. Cytomegalovirus (CMV) IE1- and pp 65-specific CD8+ T cell responses broaden over time after primary CMV infection in infants. J Infect Dis. 2007;195(12):1789–98.CrossRefPubMedGoogle Scholar
  24. 24.
    Gibson L, Piccinini G, Lilleri D, Revello MG, Wang Z, Markel S, et al. Human cytomegalovirus proteins pp 65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol. 2004;172(4):2256–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, et al. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest. 2003;111(11):1747–55.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Miles DJ, Sande M, Kaye S, Crozier S, Ojuola O, Palmero MS, et al. CD4(+) T cell responses to cytomegalovirus in early life: a prospective birth cohort study. J Infect Dis. 2008;197(5):658–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Tu W, Chen S, Sharp M, Dekker C, Manganello AM, Tongson EC, et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol. 2004;172(5):3260–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Lidehall AK, Engman ML, Sund F, Malm G, Lewensohn-Fuchs I, Ewald U, et al. Cytomegalovirus-specific CD4 and CD8 T cell responses in infants and children. Scand J Immunol. 2013;77(2):135–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013;43(11):2797–809.CrossRefPubMedGoogle Scholar
  30. 30.
    Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107(12):4781–9.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Nebbia G, Mattes FM, Smith C, Hainsworth E, Kopycinski J, Burroughs A, et al. Polyfunctional cytomegalovirus-specific CD4+ and pp 65 CD8+ T cells protect against high-level replication after liver transplantation. Am J Transplant. 2008;8(12):2590–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou W, Longmate J, Lacey SF, Palmer JM, Gallez-Hawkins G, Thao L, et al. Impact of donor CMV status on viral infection and reconstitution of multifunction CMV-specific T cells in CMV-positive transplant recipients. Blood. 2009;113(25):6465–76.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine. 2009;28(2):484–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204(6):1405–16.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Soares AP, Scriba TJ, Joseph S, Harbacheuski R, Murray RA, Gelderbloem SJ, et al. Bacillus Calmette-Guerin vaccination of human newborns induces T cells with complex cytokine and phenotypic profiles. J Immunol. 2008;180(5):3569–77.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Schmueck M, Fischer AM, Hammoud B, Brestrich G, Fuehrer H, Luu SH, et al. Preferential expansion of human virus-specific multifunctional central memory T cells by partial targeting of the IL-2 receptor signaling pathway: the key role of CD4+ T cells. J Immunol. 2012;188(10):5189–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Gerna G, Revello MG, Percivalle E, Zavattoni M, Parea M, Battaglia M. Quantification of human cytomegalovirus viremia by using monoclonal antibodies to different viral proteins. J Clin Microbiol. 1990;28(12):2681–8.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Revello MG, Zavattoni M, Baldanti F, Sarasini A, Paolucci S, Gerna G. Diagnostic and prognostic value of human cytomegalovirus load and IgM antibody in blood of congenitally infected newborns. J Clin Virol. 1999;14(1):57–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Revello MG, Zavattoni M, Sarasini A, Percivalle E, Simoncini L, Gerna G. Human cytomegalovirus in blood of immunocompetent persons during primary infection: prognostic implications for pregnancy. J Infect Dis. 1998;177(5):1170–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev. 2002;15(4):680–715.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Revello MG, Lilleri D, Zavattoni M, Furione M, Genini E, Comolli G, et al. Lymphoproliferative response in primary human cytomegalovirus (HCMV) infection is delayed in HCMV transmitter mothers. J Infect Dis. 2006;193(2):269–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Jones CE, Naidoo S, De Beer C, Esser M, Kampmann B, Hesseling AC. Maternal HIV infection and antibody responses against vaccine-preventable diseases in uninfected infants. JAMA. 2011;305(6):576–84.CrossRefPubMedGoogle Scholar
  43. 43.
    Johnson DC, McFarland EJ, Muresan P, Fenton T, McNamara J, Read JS, et al. Safety and immunogenicity of an HIV-1 recombinant canarypox vaccine in newborns and infants of HIV-1-infected women. J Infect Dis. 2005;192(12):2129–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang Z, Zhou W, Srivastava T, La Rosa C, Mandarino A, Forman SJ, et al. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector. Virology. 2008;377(2):379–90.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Revello MG, Sarasini A, Zavattoni M, Baldanti F, Gerna G. Improved prenatal diagnosis of congenital human cytomegalovirus infection by a modified nested polymerase chain reaction. J Med Virol. 1998;56(1):99–103.CrossRefPubMedGoogle Scholar
  46. 46.
    Gerna G, Vitulo P, Rovida F, Lilleri D, Pellegrini C, Oggionni T, et al. Impact of human metapneumovirus and human cytomegalovirus versus other respiratory viruses on the lower respiratory tract infections of lung transplant recipients. J Med Virol. 2006;78(3):408–16.CrossRefPubMedGoogle Scholar
  47. 47.
    Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011;79(2):167–74.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Lazzarotto T, Guerra B, Lanari M, Gabrielli L, Landini MP. New advances in the diagnosis of congenital cytomegalovirus infection. J Clin Virol. 2008;41(3):192–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–85.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Griffiths P, Plotkin S, Mocarski E, Pass R, Schleiss M, Krause P, et al. Desirability and feasibility of a vaccine against cytomegalovirus. Vaccine. 2013;31 Suppl 2:B197–203.CrossRefPubMedGoogle Scholar
  51. 51.
    Azevedo RS, Amaku M. Modelling immunization strategies with cytomegalovirus vaccine candidates. Epidemiol Infect. 2011;139(12):1818–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Mansoor N, Abel B, Scriba TJ, Hughes J, de Kock M, Tameris M, et al. Significantly skewed memory CD8+ T cell subsets in HIV-1 infected infants during the first year of life. Clin Immunol. 2009;130(3):280–9.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Bronke C, Jansen CA, Westerlaken GH, De Cuyper IM, Miedema F, Tesselaar K, et al. Shift of CMV-specific CD4+ T-cells to the highly differentiated CD45RO-CD27- phenotype parallels loss of proliferative capacity and precedes progression to HIV-related CMV end-organ disease. Clin Immunol. 2007;124(2):190–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Pourgheysari B, Piper KP, McLarnon A, Arrazi J, Bruton R, Clark F, et al. Early reconstitution of effector memory CD4+ CMV-specific T cells protects against CMV reactivation following allogeneic SCT. Bone Marrow Transplant. 2009;43(11):853–61.CrossRefPubMedGoogle Scholar
  57. 57.
    Lilleri D, Fornara C, Revello MG, Gerna G. Human cytomegalovirus-specific memory CD8+ and CD4+ T cell differentiation after primary infection. J Infect Dis. 2008;198(4):536–43.CrossRefPubMedGoogle Scholar
  58. 58.
    Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, et al. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med. 2006;203(13):2865–77.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Gehrz RC, Marker SC, Knorr SO, Kalis JM, Balfour Jr HH. Specific cell-mediated immune defect in active cytomegalovirus infection of young children and their mothers. Lancet. 1977;2(8043):844–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Pass RF, Stagno S, Britt WJ, Alford CA. Specific cell-mediated immunity and the natural history of congenital infection with cytomegalovirus. J Infect Dis. 1983;148(6):953–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Starr SE, Tolpin MD, Friedman HM, Paucker K, Plotkin SA. Impaired cellular immunity to cytomegalovirus in congenitally infected children and their mothers. J Infect Dis. 1979;140(4):500–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Pass RF, Dworsky ME, Whitley RJ, August AM, Stagno S, Alford Jr CA. Specific lymphocyte blastogenic responses in children with cytomegalovirus and herpes simplex virus infections acquired early in infancy. Infect Immun. 1981;34(1):166–70.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kim TK, St John LS, Wieder ED, Khalili J, Ma Q, Komanduri KV. Human late memory CD8+ T cells have a distinct cytokine signature characterized by CC chemokine production without IL-2 production. J Immunol. 2009;183(10):6167–74.CrossRefPubMedGoogle Scholar
  64. 64.
    Riou C, Treurnicht F, Abrahams MR, Mlisana K, Liu MK, Goonetilleke N, et al. Increased memory differentiation is associated with decreased polyfunctionality for HIV but not for cytomegalovirus-specific CD8+ T cells. J Immunol. 2012;189(8):3838–47.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Thobakgale CF, Streeck H, Mkhwanazi N, Mncube Z, Maphumulo L, Chonco F, et al. Short communication: CD8(+) T cell polyfunctionality profiles in progressive and nonprogressive pediatric HIV type 1 infection. AIDS Res Hum Retroviruses. 2011;27(9):1005–12.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Huang S, Dunkley-Thompson J, Tang Y, Macklin EA, Steel-Duncan J, Singh-Minott I, et al. Deficiency of HIV-Gag-specific T cells in early childhood correlates with poor viral containment. J Immunol. 2008;181(11):8103–11.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Ritz N, Strach M, Yau C, Dutta B, Tebruegge M, Connell TG, et al. A comparative analysis of polyfunctional T cells and secreted cytokines induced by Bacille Calmette-Guerin immunisation in children and adults. PLoS One. 2012;7(7):e37535.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Cannon MJ, Hyde TB, Schmid DS. Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol. 2011;21(4):240–55.CrossRefPubMedGoogle Scholar
  69. 69.
    Kimberlin DW, Lin CY, Sanchez PJ, Demmler GJ, Dankner W, Shelton M, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143(1):16–25.CrossRefPubMedGoogle Scholar
  70. 70.
    McCarron MJ, Reen DJ. Neonatal CD8+ T-cell differentiation is dependent on interleukin-12. Hum Immunol. 2010;71(12):1172–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Debock I, Flamand V. Unbalanced neonatal CD4(+) T-cell immunity. Front Immunol. 2014;5:393.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Sandberg JK, Fast NM, Jordan KA, Furlan SN, Barbour JD, Fennelly G, et al. HIV-specific CD8+ T cell function in children with vertically acquired HIV-1 infection is critically influenced by age and the state of the CD4+ T cell compartment. J Immunol. 2003;170(8):4403–10.CrossRefPubMedGoogle Scholar
  73. 73.
    Antoine P, Olislagers V, Huygens A, Lecomte S, Liesnard C, Donner C, et al. Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. J Immunol. 2012;189(5):2665–72.CrossRefPubMedGoogle Scholar
  74. 74.
    Slavuljica I, Kvestak D, Huszthy PC, Kosmac K, Britt WJ, Jonjic S. Immunobiology of congenital cytomegalovirus infection of the central nervous system-the murine cytomegalovirus model. Cell Mol Immunol. 2014.Google Scholar
  75. 75.
    Gabrielli L, Bonasoni MP, Santini D, Piccirilli G, Chiereghin A, Petrisli E, et al. Congenital cytomegalovirus infection: patterns of fetal brain damage. Clin Microbiol Infect. 2012;18(10):E419–27.CrossRefPubMedGoogle Scholar
  76. 76.
    Khan N, Bruton R, Taylor GS, Cobbold M, Jones TR, Rickinson AB, et al. Identification of cytomegalovirus-specific cytotoxic T lymphocytes in vitro is greatly enhanced by the use of recombinant virus lacking the US2 to US11 region or modified vaccinia virus Ankara expressing individual viral genes. J Virol. 2005;79(5):2869–79.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laura Gibson
    • 1
    • 2
    • 10
  • Constance M. Barysauskas
    • 4
    • 5
  • Margaret McManus
    • 2
  • Sheryl Dooley
    • 2
    • 3
  • Daniele Lilleri
    • 7
  • Donna Fisher
    • 8
  • Tumul Srivastava
    • 9
  • Don J. Diamond
    • 9
  • Katherine Luzuriaga
    • 2
    • 6
  1. 1.Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Boston Heart DiagnosticsFraminghamUSA
  4. 4.Department of Quantitative Health SciencesUniversity of Massachusetts Medical SchoolWorcesterUSA
  5. 5.Department of Biostatistics and Computational BiologyDana-Farber Cancer InstituteBostonUSA
  6. 6.Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterUSA
  7. 7.Laboratori Sperimentali di Ricerca-Area TrapiantologicaFondazione IRCCS Policlinico San MatteoPaviaItaly
  8. 8.Department of Pediatrics, Baystate Children’s HospitalTufts University School of MedicineSpringfieldUSA
  9. 9.Division of Translational Vaccine ResearchBeckman Research Institute of the City of HopeDuarteUSA
  10. 10.Infectious Diseases and ImmunologyUMassMemorial Medical CenterWorcesterUSA

Personalised recommendations