Advertisement

Journal of Clinical Immunology

, Volume 34, Issue 7, pp 871–890 | Cite as

Compound Heterozygous CORO1A Mutations in Siblings with a Mucocutaneous-Immunodeficiency Syndrome of Epidermodysplasia Verruciformis-HPV, Molluscum Contagiosum and Granulomatous Tuberculoid Leprosy

  • Asbjorg Stray-Pedersen
  • Emmanuelle Jouanguy
  • Amandine Crequer
  • Alison A. Bertuch
  • Betty S. Brown
  • Shalini N. Jhangiani
  • Donna M. Muzny
  • Tomasz Gambin
  • Hanne Sorte
  • Ghadir Sasa
  • Denise Metry
  • Judith Campbell
  • Marianna M. Sockrider
  • Megan K. Dishop
  • David M. Scollard
  • Richard A. Gibbs
  • Emily M. Mace
  • Jordan S. Orange
  • James R. Lupski
  • Jean-Laurent Casanova
  • Lenora M. NoroskiEmail author
Original Research

Abstract

Purpose

Coronin-1A deficiency is a recently recognized autosomal recessive primary immunodeficiency caused by mutations in CORO1A (OMIM 605000) that results in T-cell lymphopenia and is classified as T-B+NK+severe combined immunodeficiency (SCID). Only two other CORO1A-kindred are known to date, thus the defining characteristics are not well delineated. We identified a unique CORO1A-kindred.

Methods

We captured a 10-year analysis of the immune-clinical phenotypes in two affected siblings from disease debut of age 7 years. Target-specific genetic studies were pursued but unrevealing. Telomere lengths were also assessed. Whole exome sequencing (WES) uncovered the molecular diagnosis and Western blot validated findings.

Results

We found the compound heterozygous CORO1A variants: c.248_249delCT (p.P83RfsX10) and a novel mutation c.1077delC (p.Q360RfsX44) (NM_007074.3) in two affected non-consanguineous siblings that manifested as absent CD4CD45RA+ (naïve) T and memory B cells, low NK cells and abnormally increased double-negative (DN) ϒδ T-cells. Distinguishing characteristics were late clinical debut with an unusual mucocutaneous syndrome of epidermodysplasia verruciformis-human papilloma virus (EV-HPV), molluscum contagiosum and oral-cutaneous herpetic ulcers; the older female sibling also had a disfiguring granulomatous tuberculoid leprosy. Both had bilateral bronchiectasis and the female died of EBV+ lymphomas at age 16 years. The younger surviving male, without malignancy, had reproducibly very short telomere lengths, not before appreciated in CORO1A mutations.

Conclusion

We reveal the third CORO1A-mutated kindred, with the immune phenotype of abnormal naïve CD4 and DN T-cells and newfound characteristics of a late/hypomorphic-like SCID of an EV-HPV mucocutaneous syndrome with also B and NK defects and shortened telomeres. Our findings contribute to the elucidation of the CORO1A-SCID-CID spectrum.

Keywords

CORO1A (Coronin-1A deficiency) SCID-CID HPV-epidermodysplasia verruciformis mucocutaneous molluscum leprosy telomere WES (whole exome sequencing) 

Notes

Acknowledgments

This original work is in heartfelt memory of P1 and is dedicated to our CORO1A kindred. We graciously thank each of the medical and social service professionals of Texas Children’s Hospital and Baylor College of Medicine who contributed to the excellence in patient care, support, counseling and well-being of this CORO1A family and who continue to give their expertise and compassion on behalf of the affected siblings and their family members. Special appreciation is given to Drs. Robert Krance and Caridad Martinez, along with their team, of the Bone Marrow Transplantation Service of Texas Children’s Hospital-Baylor College of Medicine who are leading the transplantation efforts for the surviving sibling of this CORO1A kindred. With appreciation to Warren Leonard, MD, NIH Distinguished Investigator of the Laboratory of Molecular Immunology, National Institutes of Health, and to Karen Eldin, MD, Department of Pathology and Immunology of Baylor College of Medicine at Texas Children's Hospital. Collaboratively, the co-authors respectfully acknowledge all patients with primary immunodeficiencies and their families and express gratitude for the privilege of serving as their clinicians and scientists. This work was funded in part by Immunology, Allergy and Rheumatology of Texas Children’s Hospital-Department of Pediatrics of Baylor College of Medicine, the David Center and the Jeffrey Modell Diagnostic and Research Center to EMM, LMN and JSO the National Human Genome Research Institute, NIH Grant 5U54HG006542 to JRL and the Cancer Prevention Research Institute of Texas Grant RP120076 to AAB.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125:S182–94. doi: 10.1016/j.jaci.2009.07.053.PubMedCrossRefGoogle Scholar
  2. 2.
    Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317:617–9. doi: 10.1126/science.1142963.PubMedCrossRefGoogle Scholar
  3. 3.
    Kalman L, Lindegren M, Kobrynski L, Vogt R, Hannon H, Howard JT, et al. Mutations in selected genes required for T cell development: IL7R, CD45, IL2R gamma chain, JAK3, RAG1, RAG2, ARTEMIS and ADA and severe combined immunodeficiency. Genet Med. 2004;6:16–26. doi: 10.1097/01.GIM.0000105752.80592.A3.PubMedCrossRefGoogle Scholar
  4. 4.
    Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22:625–55. doi: 10.1146/annurev.immunol.22.012703.104614.PubMedCrossRefGoogle Scholar
  5. 5.
    Patel NC, Chinen J, Rosenblatt HM, Hanson IC, Krance RA, Paul ME, et al. Outcomes of patients with severe combined immunodeficiency treated with hematopoietic stem cell transplantation with and without preconditioning. J Allergy Clin Immunol. 2009;124(5):1062–9. doi: 10.1016/j.jaci.2009.08.041. e1-4.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dvorak C, Cowan MJ, Logan BR, Griffith L, Puck J, Notarangelo LD, et al. The natural history of children with severe combined immunodeficiency disease (SCID): the first fifty patients of the primary immune deficiency treatment consortium (PIDTC) prospective study 6901. Biol Blood Marrow Transplant. 2013;19(2):S161–2. doi: 10.1016/j.bbmt.2012.11.125.CrossRefGoogle Scholar
  7. 7.
    Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–1999. Lancet. 2003;361(9357):553–60. doi: 10.1016/S0140-6736(03)12513-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8. doi: 10.1182/blood.V99.3.872.PubMedCrossRefGoogle Scholar
  9. 9.
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, et al. Interleukin-2 receptor gamma chain mutation results in x-linked severe combined immunodeficiency in humans. Cell. 1993;73(1):147–57. doi: 10.1016/0092-8674(93)90167-O.PubMedCrossRefGoogle Scholar
  10. 10.
    Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ, Willard HF, et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet. 1993;2(8):1099–104. doi: 10.1093/hmg/2.8.1099.PubMedCrossRefGoogle Scholar
  11. 11.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, et al. Mutations of JAK-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377:65–8. doi: 10.1038/377065a0.PubMedCrossRefGoogle Scholar
  12. 12.
    Dadi JK, Simon AJ, Roifman CM. Effect of CD3δ deficiency on maturation of α/β and γ/δ t-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8. doi: 10.1056/NEJMoa031178.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwarz K, Gaus GH, Ludwig L, Pannicke U, Li Z, Linderner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274(5284):97–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B, et al. An immunodeficiency disease with rag mutations and granulomas. N Engl J Med. 2008;358:2030–8. doi: 10.1056/NEJMoa073966.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Herz W, Bousfiha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2(54):1–26. doi: 10.1111/j.1365-2249.2012.04561.x.Google Scholar
  16. 16.
    Immunodeficiency Foundation, www.primaryimmune.org.
  17. 17.
    Puck JM. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: the winner is T-cell receptor excision circles. JACI. 2012;129(3):607–16. doi: 10.1016/j.jaci.2012.01.032.Google Scholar
  18. 18.
    Lindegren ML, Kobrynski L, Rassmussen SA, Moore CA, Grosse SD, Vanderford ML, et al. Applying public health strategies to primary immunodeficiency diseases: a potential approach to genetic disorders. MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep/Centers Dis Control. 2004;53(RR-1):1–29.Google Scholar
  19. 19.
    Chinen J, Shearer WT. Advances in basic and clinical immunology in 2010. J Allergy Clin Immunol. 2011;127(2):336–41. doi: 10.1016/j.jaci.2010.11.042.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic kaposi sarcoma. JEM. 2010;207(11):2307–12. doi: 10.1084/jem.20101597.CrossRefGoogle Scholar
  21. 21.
    Avila EM, Uzel G, Hsu A, Milner JD, Turner ML, Pittalupa S, et al. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 2010;126:e1248. doi: 10.1542/peds.2009-3171.PubMedCrossRefGoogle Scholar
  22. 22.
    De Villartay JP, Lim A, Al-Mousa H, Dupont S, Dechanet-Mervill J, Coumau-Gatbois E, et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Investig. 2005;115(11):3291–9. doi: 10.1172/JCI25178.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, et al. The actin regulator coronin-1A is mutated in a thymic egress deficient mouse strain and in a T-B+NK+SCID patient. Nat Immunol. 2008;9(11):1307–15. doi: 10.1038/ni.1662.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Shiow LR, Paris K, Akan MC, Cyster JG, Sorensen RU, Puck JM. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol. 2009;131(1):24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, et al. Whole-exome sequencing identifies coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603. doi: 10.1016/j.jaci.2013.01.042.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in Autism. Hum Mol Genet. 2008;17:628–38.PubMedCrossRefGoogle Scholar
  27. 27.
    Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variations of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88. doi: 10.1016/j.ajhg.2007.12.009.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and Autism. N Engl J Med. 2008;358(7):667–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA, et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioral problems, dysmorphism, epilepsy and abnormal head size. J Med Genet. 2010;47(5):332–41.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Eckert C, Hammesfahr B, Kollmar M. A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-Coronin, defines a new subfamily and predicts protein function. BMC Evol Biol. 2011;11(268):1–17. doi: 10.1186/1471-2148-11-268.Google Scholar
  31. 31.
    Foger N, Rangell L, Dnailenko DM, Chan AC. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science. 2006;313:839–42. doi: 10.1126/science.1130563.PubMedCrossRefGoogle Scholar
  32. 32.
    Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, et al. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol. 2008;9(4):424–31. doi: 10.1038/ni1570.PubMedCrossRefGoogle Scholar
  33. 33.
    Coronin 1A; CORO1A Online Mendelian Inheritance in Man. http://omim.org/entry/605000 http://omim.org/entry/605000
  34. 34.
    Kaminski S, Hermann-Kleiter N, Meisel M, Thuille N, Cronin S, Hara H, et al. Coronin-1A is an essential regulator of the TGF beta receptor/SMAD3 signaling pathway in Th17 CD4+ T cells. J Autoimmun. 2011;37(3):198–208. doi: 10.1016/j.aut.2011.05.018.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrari G, Lange H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell. 1999;97:435–47. doi: 10.1016/S0092-8674(00)80754-0.PubMedCrossRefGoogle Scholar
  36. 36.
    Pieters J, Muller P, Jayachandran R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol. 2013;13:510–18. doi: 10.1038/nri3465.PubMedCrossRefGoogle Scholar
  37. 37.
    Sl L, Needham KM, May JR, Nolen BJ. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J Biol Chem. 2011;286:17039–46. doi: 10.1074/jbc.M111.219964.CrossRefGoogle Scholar
  38. 38.
    Bainbridge MN, Wang M, Wu Y, Newsham I, Muzny DM, Jefferies JL, et al. Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biol. 2011;12(7):R68. doi: 10.1186/gb-2011-12-7-r68.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi: 10.1093/bioinformatics/btp324.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map (SAM) format and SAM tools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. doi: 10.1038/ng.806.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, et al. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinforma. 2012;13:8. doi: 10.1186/1471-2105-13-8.CrossRefGoogle Scholar
  43. 43.
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. doi: 10.1093/bioinformatics/btr330.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bainbridge MN, Wiszniewski W, Murdock DR, Friedman J, Gonzaga-Jauregui C, Newsham I, et al. Sci Transl Med. 2011;3(87):87re3. doi: 10.1126/scitranslmed.3002243.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Boon PM, Bacin CA, Shaw CA, Eng PA, Hixon PM, Pursley AN, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326–42. doi: 10.1002/humu.21360.CrossRefGoogle Scholar
  46. 46.
    Keerthikumar S, Raju R, Kandasamy K, Hijikata A, Ramabadran S, Balakrishnan L, et al. RAPID: resource of Asian primary immunodeficiency diseases. Nucleic Acids Res. 2009;37(database issue):D863–7. doi: 10.1093/nar/gkn682.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Orange JS, Ghanta SR, Mace EM, Maru S, Rak GD, Sanborn KB, et al. IL2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function. J Clin Invest. 2011;121(4):1535–48. doi: 10.1172/JCI44862.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of Age: the pediatric AIDS clinical trials group P1009 study. J Allergy Clin Immunol. 2003;112:973–80. doi: 10.1016/j.jaci.2003.07.003.PubMedCrossRefGoogle Scholar
  49. 49.
    Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev. 2006;19(2):338–81. doi: 10.1128/CMR.19.2.338-381.2006.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    McKenna A, Hanna M, Banks E, Sivachendo A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit : a mapreduce franmework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gatfield J, Albrecht I, Zanolari B, Steinmetz MO, Pieters J. Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules. Mol Biol Cell. 2005;16(6):2786–98. doi: 10.1092/mbc.E05-01-0042.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1A: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure. 2006;14:87–96. doi: 10.1016/j.str.2005.09.013.PubMedCrossRefGoogle Scholar
  53. 53.
    Patel NC, Hertel PM, Estes MK, de la Morena M, Petru AM, Noroski LM, et al. Vaccine-acquired rotavirus in infants with severe combined immunodeficiency. NEJM. 2010;362:314–9. doi: 10.1056/NEJMoa0904485.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live Viral Vaccines in patients with Partial DiGeorge Syndrome: Clinical Experience and Cellular Immunity. Clin Immunol. 2004;112(1):106–112. doi: 10.1016/j.clim.2004.02.008.
  55. 55.
    Orth G, Favre M, Majewski S, Jablonska K, Antonsson A, Forslund O, et al. Epidermodysplasia verruciformis defines a subset of cutaneous human papillomaviruses. J Virol. 2001;75(10):4952–3. doi: 10.1128/JVI.75.10.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Orth G. Host defences against human papillomaviruses : lessons from epidermodysplasia verruciformis. Curr Top Microbiol Immunol. 2008;321:59–83. doi: 10.1007/978-3-540-75203-5_3.PubMedGoogle Scholar
  57. 57.
    Orth G. Genetics of epidermodysplasia verruciformis : insights into host defense against papillomaviruses. Semin Immunol. 2006;18(6):362–74. doi: 10.1016/j.smim.2006.07.008.PubMedCrossRefGoogle Scholar
  58. 58.
    Kremsdorf D, Favre M, Jablonska S, Obalek S, Rueda LA, Lutzner MA, et al. Molecular cloning and characterization of the genomes of nine newly recognized human papillomavirus types associated with epidermodysplasia verruciformis. J Virol. 1984;52(3):1013–8. http://jvi.asm.org/content/52/3/1013.short.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet. 2002;32:579–81. doi: 10.1038/ng1044.PubMedCrossRefGoogle Scholar
  60. 60.
    Butterbach K, Beckmann L, de Sanjose S, Benavente Y, Becker N, Foretova L, et al. Association of JAK-STAT pathway related genes with lymphoma risk: results of a european case–control study (EpiLymph). Br J Haematol. 2011;153(3):318–33. doi: 10.1111/j.1365-2141.2011.0832.x.PubMedCrossRefGoogle Scholar
  61. 61.
    Abraham N, Ma MC, Snow JW, Miners MJ, Herndier BG, Goldsmith MA. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene. 2005;24(33):5252–7. doi: 10.1038/sj.onc.1208726.PubMedCrossRefGoogle Scholar
  62. 62.
    Romero-Weaver AL, Wang HW, Steen HC, Scarzello AJ, Hall VL, Sheikh R, et al. Resistance to IFN-alpha-induced apoptosis is linked to a loss of STAT2. Mol Cancer Res. 2010;8(1):80–92.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Veltman DM, Insall RH. WASP family proteins: their evolution and its physiological implications. Mol Biol Cell. 2010;21:2880–93. doi: 10.1091/mbc.E10-04-0372.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Millard TH, Sharp SJ, Machesky LM. Signaling to actin assembly via the WASP-family proteins and the Arp2/3 complex. Biochem J. 2004;380:1–17. doi: 10.1042/BJ20040176.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K, Dominguez F. Actin-bound structures of Wiskott-aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. PNAS. 2005;102(46):166644–9. doi: 10.1073/pnas.0507021102.CrossRefGoogle Scholar
  66. 66.
    Orange J. Formation and function of the lytic NK-cell immunological Synapse. Nat Rev Immunol 2008;713–725. doi: 10.1038/nri2381.
  67. 67.
    Ghosh A, Touski S, Bhatttacharya D, Samuchiwal SK, Bhalla K, Tharad M, et al. Expression of the ARPC4 subunit of human Arp2/3 severely affects mycobacterium tuberculosis growth and suppresses immunogenic response in murine macrophages. PLoS One. 2013;8(e69949):1–12. doi: 10.1372/journal.pone.0069949.Google Scholar
  68. 68.
    Mugnier B, Nal B, Verthuy C, Boyer C, Lam D, Chasson L. Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling. PLoS One. 2008;3:e3467. doi: 10.1371/journal.pone.0003467.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. J Immunol. 2008;181:2265–70. www.jimmunol.org/content/181/4/2265.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Weill JC, Weller S, Reynaud C-A. Human marginal zone B cells. Annu Rev Immunol. 2009;27:267–85. doi: 10.1146/annurev.immunol.021908.132607.PubMedCrossRefGoogle Scholar
  71. 71.
    Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16(1):20–6. doi: 10.1097/MOH.0b013e32821ac557.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Tarzi MD, Jenner M, Hattotuwa K, Faruqi AZ, Diaz GA, Longhurst HJ. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency and myelokathexis syndrome. J All Clin Immunol. 2005;116(5):1101–5. doi: 10.1016/j.jaci.2005.08.040.CrossRefGoogle Scholar
  73. 73.
    Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, et al. Altered leukocyte response to CXCL12 in patients with warts, hypogammaglobulinemia, infections myelokathexis (WHIM) syndrome. Blood. 2004;104:444–52. doi: 10.1182/blood-2003-10-3532.PubMedCrossRefGoogle Scholar
  74. 74.
    Qian Z, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. New Engl J Med. 2009;361:2046–55. doi: 10.1056/NEJMoa0905506.CrossRefGoogle Scholar
  75. 75.
    Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122(9):3239–47. doi: 10.1172/JCI162949.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Crequer A, Picard C, Patin E, D’Amico A, Abhyankar A, Munzer M, Debre M, Zhang S-Y, de Saint-Basile G, Fischer A, Abel L, Orth G, Casanova J-L, Jouanguy E. Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLOS ONE 2012;(7):1–7. doi : 10.1371/journal/pone.0044010.
  77. 77.
    Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012;36:515–28. doi: 10.1016/j.immuni.2012.03.016.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Fieschi C, Dupuis S, Catherinot E, Feinberg J, Bustamonte J, Breiman A, et al. Low penetrance, broad resistance, and favorable outcome of inerleukin 12 receptor β1 deficiency: medical and immunological implications. J Exp Med. 2003;197(4):527–35. doi: 10.1084/jem.20021769.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Feinberg J, Fieschi C, Doffinger R, Feinberg M, Beclerc T, Boisson-Dupuis S, et al. Bacillus Calmette Guerin triggers the IL-12/IFNgamma axis by an IRAK4 and NEMO-dependent Non-cognate interaction between monocytes, NK and T lymphocytes. Eur J Immunolo. 2004;34:3276–84. doi: 10.1002/eji.200425221.CrossRefGoogle Scholar
  80. 80.
    Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620. doi: 10.1146/annurev.immunol.20.081501.125851.PubMedCrossRefGoogle Scholar
  81. 81.
    Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, Willner JP, et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood. 2007;110:1439–47. doi: 10.1182/blood-2007-02-075598.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Baerlocher GM, Vulto I, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006;1:2365–76. doi: 10.1038/nprot.2006.263.PubMedCrossRefGoogle Scholar
  83. 83.
    Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010;12(12):753–64. doi: 10.1097/GIM.0b013e3181f415b5.PubMedCrossRefGoogle Scholar
  84. 84.
    Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–6557.2710915. doi: 10.1182/blood-2008-12-192880.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Yamada O, Ozaki K, Akiyama M, et al. JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells. Mol CancerTher. 2012;11:1112–21. doi: 10.1158/1535-7163.CrossRefGoogle Scholar
  86. 86.
    Baykal C, Buyukbabani N, Kavak A. Dyskeratosis congenita associated with Hodgkin’s disease. Eur J Dermatol. 1998;8:385–7. http://www.jle.com/en/revues/medecine/ejd/e-docs/00/01/88/6A/article.phtml.PubMedGoogle Scholar
  87. 87.
    Jyonouchi S, Forbes L, Ruchelli E, Sullivan KE. Dyskeratosis congenita: a combined immunodeficiency with broad clinical spectrum-a single center pediatric experience. Pediatr Allergy Immunol. 2011;22:313–9. doi: 10.1111/j.1399-3038.2010.01136.x.PubMedCrossRefGoogle Scholar
  88. 88.
    Berthet F, Tuchshmid P, Boltshauser E, Seger RA. The hoyeraal-hreidarsson syndrome: don’t forget the associated immunodeficiency. Eur J Pediatr. 1995;154:998. doi: 10.1007/BF01958649.PubMedCrossRefGoogle Scholar
  89. 89.
    Knudson M, Kulkarni S, Ballas ZK, Bessler M, Goldman F. Association of immune abnormalities with telomere shortening in autosomal-dominant dyskeratosis congenita. Blood. 2005;105:682–8. doi: 10.1182/blood-2004-04-1673.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang J, Huo K, Ma L, Tang L, Li D, Huang X, et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol. 2011;7(536):1–10. doi: 10.1038/msb.2011.67.Google Scholar
  91. 91.
    Nandakumar J, Cech TR. Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol. 2013;14:69–82. doi: 10.1038/nrm3505.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chen LY, Liu D, Songyang Z. Telomere maintenance through spatial control of telomeric proteins. Mol Cell Biol. 2007;27(16):5898–909. doi: 10.1128/MCB.00603-07.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Angkustsiri K, Krakowiak P, Moghaddam B, Wardinsky T, Gardner J, Kalamkarian N, et al. Autism. 2011;15(6):746–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S, et al. KCTD13 is a major driver of the mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 2012;485(7398):363–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ahmen Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickeson DW. Actin-binding proteins coronin-1A are effective microglial markers for immunohistochemistry. J Histochem Cytochem. 2007;55(7):687–700. doi: 10.1369/jhc.6A7156.2007.CrossRefGoogle Scholar
  96. 96.
    Alcais A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova JL. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann NY Acad Sci. 2010;1214:18–33. doi: 10.1111/j.1749-6621.2010.05834.x.PubMedCrossRefGoogle Scholar
  97. 97.
    Casanova JL, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genom Hum Genet. 2013.Google Scholar
  98. 98.
    Morgan RO, Fernandez MP. Molecular phylogeny and evolution of the coronin gene family. (Chapter 4) The Coronin family of proteins, edited by Christoph S. Clemen, Ludwig Eichinger and Vasily Rybakin. 2008 Lands Bioscience and Springer Science+Business Media. doi: 10.1007/978-0-387-09595-0_5.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Asbjorg Stray-Pedersen
    • 1
    • 2
    • 3
    • 7
    • 9
  • Emmanuelle Jouanguy
    • 4
    • 5
  • Amandine Crequer
    • 4
    • 5
  • Alison A. Bertuch
    • 6
    • 7
  • Betty S. Brown
    • 1
    • 7
    • 8
  • Shalini N. Jhangiani
    • 2
    • 9
  • Donna M. Muzny
    • 2
    • 9
  • Tomasz Gambin
    • 2
    • 9
  • Hanne Sorte
    • 3
    • 9
  • Ghadir Sasa
    • 6
    • 7
  • Denise Metry
    • 7
    • 10
  • Judith Campbell
    • 7
    • 11
  • Marianna M. Sockrider
    • 7
    • 12
  • Megan K. Dishop
    • 13
    • 14
  • David M. Scollard
    • 15
  • Richard A. Gibbs
    • 2
    • 7
    • 9
  • Emily M. Mace
    • 1
    • 7
    • 16
  • Jordan S. Orange
    • 1
    • 7
    • 8
    • 6
    • 16
  • James R. Lupski
    • 2
    • 7
    • 9
  • Jean-Laurent Casanova
    • 4
    • 5
  • Lenora M. Noroski
    • 1
    • 7
    • 8
    Email author
  1. 1.Allergy & Immunology, Section of Immunology, Allergy and RheumatologyTexas Children’s HospitalHoustonUSA
  2. 2.Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  3. 3.Department of Medical GeneticsOslo University HospitalOsloNorway
  4. 4.St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchThe Rockefeller UniversityNew YorkUSA
  5. 5.Laboratory of Human Genetics of Infectious Diseases, Necker BranchUniversity Paris Descartes and Inserm, Imagine FoundationParisFrance
  6. 6.Hematology/OncologyTexas Children’s HospitalHoustonUSA
  7. 7.Department of PediatricsBaylor College of MedicineHoustonUSA
  8. 8.Clinical Immunology Laboratory, Section of Immunology, Allergy and Rheumatology, Texas Children’s Hospital/Department of PediatricsBaylor College of MedicineHoustonUSA
  9. 9.Human Genome Sequencing Center of Baylor College of MedicineHoustonUSA
  10. 10.Department of DermatologyTexas Children’s HospitalHoustonUSA
  11. 11.Infectious DiseasesTexas Children’s HospitalHoustonUSA
  12. 12.Pulmonary MedicineTexas Children’s HospitalHoustonUSA
  13. 13.Department of PathologyUniversity of ColoradoDenverUSA
  14. 14.Department of PathologyTexas Children’s HospitalHoustonUSA
  15. 15.National Hansen’s Disease ProgramsBaton RougeUSA
  16. 16.Center for Human Immunobiology, Texas Children’s Hospital-Baylor College of MedicineHoustonUSA

Personalised recommendations