Advertisement

Journal of Clinical Immunology

, Volume 34, Issue 5, pp 573–583 | Cite as

Reduced BAFF-R and Increased TACI Expression in Common Variable Immunodeficiency

  • Rita R. Barbosa
  • Susana L. Silva
  • Sara P. Silva
  • Alcinda C. Melo
  • M. Conceição Pereira-Santos
  • João T. Barata
  • Lennart Hammarström
  • Marília Cascalho
  • Ana E. SousaEmail author
Original Research

Abstract

Purpose

B-cell survival and differentiation critically depend on the interaction of BAFF-R and TACI with their ligands, BAFF and APRIL. Mature B-cell defects lead to Common Variable Immunodeficiency (CVID), which is associated with elevated serum levels of BAFF and APRIL. Nevertheless, BAFF-R and TACI expression in CVID and their relationship with ligand availability remain poorly understood.

Methods and Results

We found that BAFF-R expression was dramatically reduced on B cells of CVID patients, relative to controls. BAFF-R levels inversely correlated with serum BAFF concentration both in CVID and healthy subjects. We also found that recombinant BAFF stimulation reduced BAFF-R expression on B cells without decreasing transcript levels. On the other hand, CVID subjects had increased TACI expression on B cells in direct association with serum BAFF but not APRIL levels. Moreover, splenomegaly was associated with higher TACI expression, suggesting that perturbations of TACI function may underlie lymphoproliferation in CVID.

Conclusions

Our results indicate that availability of BAFF determines BAFF-R and TACI expression on B cells, and that BAFF-R expression is controlled by BAFF binding. Identification of the factors governing BAFF-R and TACI is crucial to understanding CVID pathogenesis, and B-cell biology in general, as well as to explore their potential as therapeutic targets.

Keywords

B cells BAFF-R TACI BAFF common variable immunodeficiency 

Notes

Acknowledgments

We would like to thank Elisa Pedro and Manuel Barbosa from the Department of Immunoallergology of the University Hospital de Santa Maria, Lisbon, Portugal, for the clinical collaboration; Rui M. M. Victorino, Íris Caramalho, Adriana S. Albuquerque and Russell B. Foxall for the helpful discussions and critical revision of the manuscript, as well as Ana Isabel Pinheiro, Ana Rita Pires and Paula Matoso, for the invaluable technical assistance, all from the Instituto de Medicina Molecular, Lisbon, Portugal. R.R.B. and S.L.S. received PhD scholarships from Fundação para a Ciência e Tecnologia (FCT) and Programa Operacional Ciência e Inovação 2010, Portugal.

Conflict of Interest Disclosures

The authors declare that they have no conflict of interest.

Supplementary material

10875_2014_47_MOESM1_ESM.pdf (686 kb)
Online Resource (PDF 685 KB)

References

  1. 1.
    Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.PubMedCrossRefGoogle Scholar
  2. 2.
    Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131:959–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Mantchev GT, Cortesao CS, Rebrovich M, Cascalho M, Bram RJ. TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens. J Immunol. 2007;179:2282–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsuji S, Cortesao C, Bram RJ, Platt JL, Cascalho M. TACI deficiency impairs sustained Blimp-1 expression in B cells decreasing long-lived plasma cells in the bone marrow. Blood. 2011;118:5832–9.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Jin R, Kaneko H, Suzuki H, Arai T, Teramoto T, Fukao T, et al. Age-related changes in BAFF and APRIL profiles and upregulation of BAFF and APRIL expression in patients with primary antibody deficiency. Int J Mol Med. 2008;21:233–8.PubMedGoogle Scholar
  6. 6.
    Knight AK, Radigan L, Marron T, Langs A, Zhang L, Cunningham-Rundles C. High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clin Immunol. 2007;124:182–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kreuzaler M, Rauch M, Salzer U, Birmelin J, Rizzi M, Grimbacher B, et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. J Immunol. 2012;188:497–503.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbosa RR, Silva SP, Silva SL, Melo AC, Pedro E, Barbosa MP, et al. Primary B-cell deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell differentiation. PLoS One. 2011;6:e22848.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    La Cava A. Targeting the BLyS-APRIL signaling pathway in SLE. Clin Immunol. 2013;148:322–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest. 2002;109:59–68.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–710.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci U S A. 2000;97:3370–5.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med. 2003;198:937–45.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol. 2005;17:282–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37:829–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Losi CG, Silini A, Fiorini C, Soresina A, Meini A, Ferrari S, et al. Mutational analysis of human BAFF receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J Clin Immunol. 2005;25:496–502.PubMedCrossRefGoogle Scholar
  17. 17.
    Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Bohm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106:13945–50.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Park MA, Li JT, Hagan JB, Maddox DE, Abraham RS. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372:489–502.PubMedCrossRefGoogle Scholar
  20. 20.
    Barbosa RR, Silva SP, Silva SL, Tendeiro R, Melo AC, Pedro E, et al. Monocyte activation is a feature of common variable immunodeficiency irrespective of plasma lipopolysaccharide levels. Clin Exp Immunol. 2012;169:263–72.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Pieper K, Rizzi M, Speletas M, Smulski CR, Sic H, Kraus H et al. A common single nucleotide polymorphism impairs B-cell activating factor receptor’s multimerization, contributing to common variable immunodeficiency. J Allergy Clin Immunol. 2014;133:1222–5.Google Scholar
  22. 22.
    Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Romberg N, Chamberlain N, Saadoun D, Gentile M, Kinnunen T, Ng YS, et al. CVID-associated TACI mutations affect autoreactive B cell selection and activation. J Clin Invest. 2013;123:4283–93.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Martinez-Gallo M, Radigan L, Almejun MB, Martinez-Pomar N, Matamoros N, Cunningham-Rundles C. TACI mutations and impaired B-cell function in subjects with CVID and healthy heterozygotes. J Allergy Clin Immunol. 2013;131:468–76.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Fabris M, Quartuccio L, Sacco S, De Marchi G, Pozzato G, Mazzaro C, et al. B-Lymphocyte stimulator (BLyS) up-regulation in mixed cryoglobulinaemia syndrome and hepatitis-C virus infection. Rheumatology (Oxford). 2007;46:37–43.CrossRefGoogle Scholar
  26. 26.
    Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285:260–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189:1747–56.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hahne M, Kataoka T, Schroter M, Hofmann K, Irmler M, Bodmer JL, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med. 1998;188:1185–90.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol. 2001;11:1547–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Xia XZ, Treanor J, Senaldi G, Khare SD, Boone T, Kelley M, et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med. 2000;192:137–43.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Albuquerque AS, Marques JG, Silva SL, Ligeiro D, Devlin BH, Dutrieux J, et al. Human FOXN1-deficiency is associated with alphabeta double-negative and FoxP3+ T-cell expansions that are distinctly modulated upon thymic transplantation. PLoS One. 2012;7:e37042.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Yan M, Wang H, Chan B, Roose-Girma M, Erickson S, Baker T, et al. Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol. 2001;2:638–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Salzer U, Bacchelli C, Buckridge S, Pan-Hammarstrom Q, Jennings S, Lougaris V, et al. Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes. Blood. 2009;113:1967–76.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    La Cava A. Common variable immunodeficiency: two mutations are better than one. J Clin Invest. 2013;123:4142–3.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sellam J, Miceli-Richard C, Gottenberg JE, Ittah M, Lavie F, Lacabaratz C, et al. Decreased B cell activating factor receptor expression on peripheral lymphocytes associated with increased disease activity in primary Sjogren’s syndrome and systemic lupus erythematosus. Ann Rheum Dis. 2007;66:790–7.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Carter RH, Zhao H, Liu X, Pelletier M, Chatham W, Kimberly R, et al. Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis Rheum. 2005;52:3943–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Xanthoulea S, Pasparakis M, Kousteni S, Brakebusch C, Wallach D, Bauer J, et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med. 2004;200:367–76.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis. 2003;62:168–71.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Becker-Merok A, Nikolaisen C, Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus. 2006;15:570–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44:1313–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim J, Gross JA, Dillon SR, Min JK, Elkon KB. Increased BCMA expression in lupus marks activated B cells, and BCMA receptor engagement enhances the response to TLR9 stimulation. Autoimmunity. 2011;44:69–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol. 2001;166:6–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao LD, Li Y, Smith Jr MF, Wang JS, Zhang W, Tang FL, et al. Expressions of BAFF/BAFF receptors and their correlation with disease activity in Chinese SLE patients. Lupus. 2010;19:1534–49.PubMedCrossRefGoogle Scholar
  46. 46.
    Ju S, Zhang D, Wang Y, Ni H, Kong X, Zhong R. Correlation of the expression levels of BLyS and its receptors mRNA in patients with systemic lupus erythematosus. Clin Biochem. 2006;39:1131–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Koyama T, Tsukamoto H, Miyagi Y, Himeji D, Otsuka J, Miyagawa H, et al. Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005;64:1065–7.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Stewart DM, McAvoy MJ, Hilbert DM, Nelson DL. B lymphocytes from individuals with common variable immunodeficiency respond to B lymphocyte stimulator (BLyS protein) in vitro. Clin Immunol. 2003;109:137–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Resnick ES, Cunningham-Rundles C. The many faces of the clinical picture of common variable immune deficiency. Curr Opin Allergy Clin Immunol. 2012;12:595–601.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rita R. Barbosa
    • 1
  • Susana L. Silva
    • 1
    • 2
  • Sara P. Silva
    • 1
    • 2
  • Alcinda C. Melo
    • 1
  • M. Conceição Pereira-Santos
    • 1
  • João T. Barata
    • 1
  • Lennart Hammarström
    • 3
  • Marília Cascalho
    • 4
  • Ana E. Sousa
    • 1
    Email author
  1. 1.Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
  2. 2.Serviço de Imunoalergologia, Hospital de Santa MariaCentro Hospitalar Lisboa Norte - EPELisboaPortugal
  3. 3.Karolinska Institutet HuddingeStockholmSweden
  4. 4.Transplantation Biology, Microbiology and ImmunologyUniversity of MichiganAnn ArborUSA

Personalised recommendations