Advertisement

Journal of Clinical Immunology

, Volume 34, Supplement 1, pp 80–85 | Cite as

Intravenous Immunoglobulin (IVIG) Treatment Exerts Antioxidant and Neuropreservatory Effects in Preclinical Models of Alzheimer’s Disease

  • Scott E. CountsEmail author
  • Balmiki Ray
  • Elliott J. Mufson
  • Sylvia E. Perez
  • Bin He
  • Debomoy K. Lahiri
Article

Abstract

Intravenous immunoglobulin (IVIG) has shown limited promise so far in human clinical studies on Alzheimer’s disease (AD), yet overwhelmingly positive preclinical work in animals and human brain cultures support the notion that the therapy remains potentially efficacious. Here, we elaborate on IVIG neuropreservation by demonstrating that IVIG protects human primary neurons against oxidative stress in vitro and that IVIG preserves antioxidant defense mechanisms in vivo. Based on these results, we propose the following translational impact: If the dosage and treatment conditions are adequately optimized, then IVIG treatment could play a significant role in preventing and/or delaying the progression of neurodegenerative diseases, such as AD. We suggest that IVIG warrants further investigation to fully exploit its potential as an anti-oxidant, neuroprotective and synapto-protecting agent.

Keywords

Immunoglobulin Alzheimer’s disease oxidative stress human neurons transgenic neuroprotection 

Notes

Acknowledgments

We sincerely appreciate the grant support from the Alzheimer’s Association (Zenith award and IIRG; DKL), the NIH (DKL and SEC), Baxter Healthcare (DKL and SEC), and the St. Mary’s Foundation (SEC).

References

  1. 1.
    Schneider LS, Lahiri DK. The perils of Alzheimer’s drug development. Curr Alzheimer Res. 2009;6(1):77–8.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lahiri DK, Long, JM, Maloney B, Greig NH. Lessons from a BACE1 inhibitor trial: Off-site but not off base. Alzheimers Dement. 2014. doi: 10.1016/j.jalz.2013.11.004.
  3. 3.
    Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci. 2005;25(4):823–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Lahiri DK, Maloney B, Zawia NH. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry. 2009;14(11):992–1003. Nature Publishing Group.PubMedCrossRefGoogle Scholar
  5. 5.
    Selkoe DJ. SnapShot: pathobiology of Alzheimer’s disease. Cell. 2013;154(2):468–468.e1.PubMedCrossRefGoogle Scholar
  6. 6.
    Perez FP, Bose D, Maloney B, Nho K, Shah K, Lahiri DK. Late-onset Alzheimer’s disease (LOAD) heating up and foxed by several proteins: pathomolecular efects of the aging process. J Alzheimer Dis. 2014;40(1):1–17.Google Scholar
  7. 7.
    Alley GM, Bailey JA, Chen D, Ray B, Puli LK, Tanila H, et al. Memantine lowers amyloid-beta peptide levels in neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res. 2010;88(1):143–54.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bailey JA, Lahiri DK. A novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer’s disease. J Neurochem. 2010;112(4):843–53.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bailey JA, Ray B, Greig NH, Lahiri DK. Rivastigmine lowers Aβ and increases sAPPalpha levels, which parallel elevated synaptic markers and metabolic activity in degenerating primary rat neurons. PLoS ONE. 2011;6(7):e21954.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ray B, Chauhan NB, Lahiri DK. Oxidative insults to neurons and synapse are prevented by AGE and SAC treatment in the neuronal culture and APP-Tg mouse model. J Neurochem. 2011;117(3):388–402.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Farlow MR, Brosch JR. Immunotherapy for Alzheimer’s disease. Neurol Clin. 2013;31(3):869–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects ofAbeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlledphase I trial. Lancet. 2008;372:216–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology. 2009;73:2061–70.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64:1553–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, et al. Intravenous immunoglobulins as atreatment for Alzheimer’s disease: rationale and current evidence. Drugs. 2010;70:513–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, et al. 18-Month study ofintravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging. 2009;30:1728–36.PubMedCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Magga J, Puli L, Pihlaja R, et al. Human intravenous immunoglobulin provides protection against Abeta toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2010;7:90.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H. Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2012;9:105.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Counts S, Perez S, He B, Mufson E. Intravenous immunoglobulin reduces tau pathology and preserves neuroplastic gene expression in the 3xTg mouse model of Alzheimer’s disease. Current Alz Res. 2014; In press.Google Scholar
  21. 21.
    Sudduth TL, Greenstein A, Wilcock DM. Intracranial injection of Gammagard, a human IVIg, modulates the inflammatory response of the brain and lowers Aβ in APP/PS1 mice along a different time course than anti-Aβ antibodies. J Neurosci. 2013;33(23):9684–92.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bailey JA, Ray B, Lahiri DK. Intravenous immunoglobulin (IVIG) protects neuronal viability and synaptic markers in cultured degenerating primary hippocampal neurons. Societ Neurosci Abst. 2012;852.04.Google Scholar
  23. 23.
    Lahiri DK, Ray B. Effect of IVIG in preserving human primary neurons and protecting them against oxidative stress. Alzheimers Dement. 2013;9(4):800.CrossRefGoogle Scholar
  24. 24.
    Lahiri DK, Ray B. Intravenous Immunoglobulin (IVIG) treatment exerts a protective effect against oxidative insults in primary human neuronal mixed cultures. Curr Alzheimer Res. 2014; In press.Google Scholar
  25. 25.
    Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem. 2012;28(37):31298–310.CrossRefGoogle Scholar
  26. 26.
    Counts SE, Che S, Ginsberg SD, Mufson EJ. Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer’s disease. J Chem Neuroanat. 2011;42:111–7.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ginsberg SD, Alldred MJ, Counts SE, Cataldo AM, Neve RL, Jiang Y, et al. Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry. 2010;68:885–93.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Scott E. Counts
    • 1
    • 2
    Email author
  • Balmiki Ray
    • 3
    • 4
  • Elliott J. Mufson
    • 5
  • Sylvia E. Perez
    • 5
  • Bin He
    • 5
  • Debomoy K. Lahiri
    • 3
    • 4
    • 6
  1. 1.Department of Translational Science and Molecular MedicineMichigan State UniversityGrand RapidsUSA
  2. 2.Department of Family MedicineMichigan State UniversityGrand RapidsUSA
  3. 3.Department of PsychiatryIndiana University School of MedicineIndianapolisUSA
  4. 4.Department of Molecular GeneticsIndiana University School of MedicineIndianapolisUSA
  5. 5.Department of Neurological SciencesRush University Medical CenterChicagoUSA
  6. 6.Institute of Psychiatric ResearchIndiana University School of MedicineIndianapolisUSA

Personalised recommendations