Journal of Clinical Immunology

, Volume 34, Supplement 1, pp 86–104 | Cite as

Molecules Involved in the Crosstalk Between Immune- and Peripheral Nerve Schwann Cells

  • Nevena Tzekova
  • André Heinen
  • Patrick KüryEmail author


Schwann cells are the myelinating glial cells of the peripheral nervous system and establish myelin sheaths on large caliber axons in order to accelerate their electrical signal propagation. Apart from this well described function, these cells revealed to exhibit a high degree of differentiation plasticity as they were shown to re- and dedifferentiate upon injury and disease as well as to actively participate in regenerative- and inflammatory processes. This review focuses on the crosstalk between glial- and immune cells observed in many peripheral nerve pathologies and summarizes functional evidences of molecules, regulators and factors involved in this process. We summarize data on Schwann cell’s role presenting antigens, on interactions with the complement system, on Schwann cell surface molecules/receptors and on secreted factors involved in immune cell interactions or para-/autocrine signaling events, thus strengthening the view for a broader (patho) physiological role of this cell lineage.


PNS myelinating glia immune cells cytokine chemokine macrophage T cell MHC complement antigen presentation neuropathies crush injury nerve regeneration myelin schwann cell immunocompetence 


  1. 1.
    Scherer SS, Arroyo EJ. Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst. 2002;7(1):1–12.PubMedGoogle Scholar
  2. 2.
    Son YJ, Thompson WJ. Schwann cell processes guide regeneration of peripheral axons. Neuron. 1995;14(1):125–32.PubMedGoogle Scholar
  3. 3.
    Martini R, Fischer S, Lopez-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 2008;56(14):1566–77.PubMedGoogle Scholar
  4. 4.
    Hoke A. Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2(8):448–54.PubMedGoogle Scholar
  5. 5.
    Gordon T. The role of neurotrophic factors in nerve regeneration. Neurosurg Focus. 2009;26(2):E3.PubMedGoogle Scholar
  6. 6.
    Gordon T. Neurotrophic factor expression in denervated motor and sensory Schwann cells: Relevance to specificity of peripheral nerve regeneration. Exp Neurol. 2014;254C:99–108.Google Scholar
  7. 7.
    Armati PJ, Mathey EK. An update on Schwann cell biology–immunomodulation, neural regulation and other surprises. J Neurol Sci. 2013;333(1–2):68–72.PubMedGoogle Scholar
  8. 8.
    Bosse F, Hasenpusch-Theil K, Kury P, Muller HW. Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. J Neurochem. 2006;96(5):1441–57.PubMedGoogle Scholar
  9. 9.
    Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75(4):633–47.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Heinen A, Kremer D, Gottle P, Kruse F, Hasse B, Lehmann H, et al. The cyclin-dependent kinase inhibitor p57kip2 is a negative regulator of Schwann cell differentiation and in vitro myelination. Proc Natl Acad Sci U S A. 2008;105(25):8748–53.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Heinen A, Lehmann HC, Küry P. Negative regulators of schwann cell differentiation-novel targets for peripheral nerve therapies? J Clin Immunol. 2013;33 Suppl 1:S18–26. Epub 2012/09/08.PubMedGoogle Scholar
  12. 12.
    Meyer Zu Horste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve. 2008;37(1):3–13.PubMedGoogle Scholar
  13. 13.
    Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis. 2013;55:95–103.PubMedGoogle Scholar
  14. 14.
    Armati PJ, Pollard JD, Gatenby P. Rat and human Schwann cells in vitro can synthesize and express MHC molecules. Muscle Nerve. 1990;13(2):106–16.PubMedGoogle Scholar
  15. 15.
    Samuel NM, Jessen KR, Grange JM, Mirsky R. Gamma interferon, but not Mycobacterium leprae, induces major histocompatibility class II antigens on cultured rat Schwann cells. J Neurocytol. 1987;16(2):281–7.PubMedGoogle Scholar
  16. 16.
    Kingston AE, Bergsteinsdottir K, Jessen KR, Van der Meide PH, Colston MJ, Mirsky R. Schwann cells co-cultured with stimulated T cells and antigen express major histocompatibility complex (MHC) class II determinants without interferon-gamma pretreatment: synergistic effects of interferon-gamma and tumor necrosis factor on MHC class II induction. Eur J Immunol. 1989;19(1):177–83.PubMedGoogle Scholar
  17. 17.
    Bergsteinsdottir K, Kingston A, Jessen KR. Rat Schwann cells can be induced to express major histocompatibility complex class II molecules in vivo. J Neurocytol. 1992;21(5):382–90.PubMedGoogle Scholar
  18. 18.
    Lilje O, Armati PJ. The distribution and abundance of MHC and ICAM-1 on Schwann cells in vitro. J Neuroimmunol. 1997;77(1):75–84.PubMedGoogle Scholar
  19. 19.
    Tsuyuki Y, Fujimaki H, Hikawa N, Fujita K, Nagata T, Minami M. IFN-gamma induces coordinate expression of MHC class I-mediated antigen presentation machinery molecules in adult mouse Schwann cells. Neuroreport. 1998;9(9):2071–5.PubMedGoogle Scholar
  20. 20.
    Spierings E, de Boer T, Wieles B, Adams LB, Marani E, Ottenhoff TH. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol. 2001;166(10):5883–8.PubMedGoogle Scholar
  21. 21.
    Lilje O. The processing and presentation of endogenous and exogenous antigen by Schwann cells in vitro. Cell Mol Life Sci. 2002;59(12):2191–8.PubMedGoogle Scholar
  22. 22.
    Wekerle H, Schwab M, Linington C, Meyermann R. Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol. 1986;16(12):1551–7.PubMedGoogle Scholar
  23. 23.
    Meyer Zu Horste G, Heidenreich H, Mausberg AK, Lehmann HC, ten Asbroek AL, Saavedra JT, et al. Mouse Schwann cells activate MHC class I and II restricted T-cell responses, but require external peptide processing for MHC class II presentation. Neurobiol Dis. 2010;37(2):483–90.PubMedGoogle Scholar
  24. 24.
    Meyer Zu Horste G, Heidenreich H, Lehmann HC, Ferrone S, Hartung HP, Wiendl H, et al. Expression of antigen processing and presenting molecules by Schwann cells in inflammatory neuropathies. Glia. 2010;58(1):80–92.PubMedGoogle Scholar
  25. 25.
    Pollard JD, Baverstock J, McLeod JG. Class II antigen expression and inflammatory cells in the Guillain-Barre syndrome. Ann Neurol. 1987;21(4):337–41.PubMedGoogle Scholar
  26. 26.
    Pollard JD, McCombe PA, Baverstock J, Gatenby PA, McLeod JG. Class II antigen expression and T lymphocyte subsets in chronic inflammatory demyelinating polyneuropathy. J Neuroimmunol. 1986;13(2):123–34.PubMedGoogle Scholar
  27. 27.
    Mancardi GL, Cadoni A, Zicca A, Schenone A, Tabaton M, De Martini I, et al. HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology. 1988;38(6):848–51.PubMedGoogle Scholar
  28. 28.
    Mitchell GW, Williams GS, Bosch EP, Hart MN. Class II antigen expression in peripheral neuropathies. J Neurol Sci. 1991;102(2):170–6.PubMedGoogle Scholar
  29. 29.
    Van Rhijn I, Van den Berg LH, Bosboom WM, Otten HG, Logtenberg T. Expression of accessory molecules for T-cell activation in peripheral nerve of patients with CIDP and vasculitic neuropathy. Brain J Neurol. 2000;123(Pt 10):2020–9.Google Scholar
  30. 30.
    Im JS, Tapinos N, Chae GT, Illarionov PA, Besra GS, DeVries GH, et al. Expression of CD1d molecules by human schwann cells and potential interactions with immunoregulatory invariant NK T cells. J Immunol. 2006;177(8):5226–35.PubMedGoogle Scholar
  31. 31.
    Wanschitz J, Maier H, Lassmann H, Budka H, Berger T. Distinct time pattern of complement activation and cytotoxic T cell response in Guillain-Barre syndrome. Brain J Neurol. 2003;126(Pt 9):2034–42.Google Scholar
  32. 32.
    Lee PR, Cohen JE, Fields RD. Immune system evasion by peripheral nerve sheath tumor. Neurosci Lett. 2006;397(1–2):126–9.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Reuss DE, Mucha J, Holtkamp N, Muller U, Berlien HP, Mautner VF, et al. Functional MHC class II is upregulated in neurofibromin-deficient Schwann cells. J Invest Dermatol. 2013;133(5):1372–5.PubMedGoogle Scholar
  34. 34.
    Liu W, Ren Y, Bossert A, Wang X, Dayawansa S, Tong J, et al. Allotransplanted neurons used to repair peripheral nerve injury do not elicit overt immunogenicity. PLoS ONE. 2012;7(2):e31675.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Yang Y, Dai W, Chen Z, Yan Z, Yao Z, Zhang C. Downregulating immunogenicity of Schwann cells via inhibiting a potential target of class II transactivator (CIITA) gene. Bioscience Trends. 2013;7(1):50–5.PubMedGoogle Scholar
  36. 36.
    Thams S, Brodin P, Plantman S, Saxelin R, Karre K, Cullheim S. Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. J Neurosci Off J Soc Neurosci. 2009;29(43):13503–15.Google Scholar
  37. 37.
    Murata K, Dalakas MC. Expression of the co-stimulatory molecule BB-1, the ligands CTLA-4 and CD28 and their mRNAs in chronic inflammatory demyelinating polyneuropathy. Brain J Neurol. 2000;123(Pt 8):1660–6.Google Scholar
  38. 38.
    Kiefer R, Dangond F, Mueller M, Toyka KV, Hafler DA, Hartung HP. Enhanced B7 costimulatory molecule expression in inflammatory human sural nerve biopsies. J Neurol Neurosurg Psychiatry. 2000;69(3):362–8.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Duan RS, Jin T, Yang X, Mix E, Adem A, Zhu J. Apolipoprotein E deficiency enhances the antigen-presenting capacity of Schwann cells. Glia. 2007;55(7):772–6.PubMedGoogle Scholar
  40. 40.
    Mao XJ, Zhang XM, Zhang HL, Quezada HC, Mix E, Yang X, et al. TNF-alpha receptor 1 deficiency reduces antigen-presenting capacity of Schwann cells and ameliorates experimental autoimmune neuritis in mice. Neurosci Lett. 2010;470(1):19–23.PubMedGoogle Scholar
  41. 41.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.PubMedGoogle Scholar
  42. 42.
    Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58(14):1701–9.PubMedGoogle Scholar
  43. 43.
    Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S, et al. Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia. 2007;55(7):712–22.PubMedGoogle Scholar
  44. 44.
    Hao HN, Peduzzi-Nelson JD, VandeVord PJ, Barami K, DeSilva SP, Pelinkovic D, et al. Lipopolysaccharide-induced inflammatory cytokine production by Schwann's cells dependent upon TLR4 expression. J Neuroimmunol. 2009;212(1–2):26–34.PubMedGoogle Scholar
  45. 45.
    Mietto BS, Jurgensen S, Alves L, Pecli C, Narciso MS, Assuncao-Miranda I, et al. Lack of galectin-3 speeds Wallerian degeneration by altering TLR and pro-inflammatory cytokine expressions in injured sciatic nerve. Eur J Neurosci. 2013;37(10):1682–90.PubMedGoogle Scholar
  46. 46.
    Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS, et al. Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun. 2006;350(3):742–7.PubMedGoogle Scholar
  47. 47.
    Mattos KA, Oliveira VG, D'Avila H, Rodrigues LS, Pinheiro RO, Sarno EN, et al. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence. J Immunol. 2011;187(5):2548–58.PubMedGoogle Scholar
  48. 48.
    Lisak RP, Bealmear B. Upregulation of intercellular adhesion molecule-1 (ICAM-1) on rat Schwann cells in vitro: comparison of interferon-gamma, tumor necrosis factor-alpha and interleukin-1. J Peripher Nerv Syst. 1997;2(3):233–43.PubMedGoogle Scholar
  49. 49.
    Shen A, Yang J, Gu Y, Zhou D, Sun L, Qin Y, et al. Lipopolysaccharide-evoked activation of p38 and JNK leads to an increase in ICAM-1 expression in Schwann cells of sciatic nerves. FEBS J. 2008;275(17):4343–53.PubMedGoogle Scholar
  50. 50.
    Kirsch M, Campos Friz M, Vougioukas VI, Hofmann HD. Wallerian degeneration and axonal regeneration after sciatic nerve crush are altered in ICAM-1-deficient mice. Cell Tissue Res. 2009;338(1):19–28.PubMedGoogle Scholar
  51. 51.
    Chang CY, Lee YH, Jiang-Shieh YF, Chien HF, Pai MH, Chen HM, et al. Novel distribution of cluster of differentiation 200 adhesion molecule in glial cells of the peripheral nervous system of rats and its modulation after nerve injury. Neuroscience. 2011;183:32–46.PubMedGoogle Scholar
  52. 52.
    Vedeler CA. Demonstration of Fc gamma receptors on human peripheral nerve fibres. J Neuroimmunol. 1987;15(2):207–16.PubMedGoogle Scholar
  53. 53.
    Vedeler CA, Nilsen R, Matre R. Localization of Fc gamma receptors and complement receptors CR1 on human peripheral nerve fibres by immunoelectron microscopy. J Neuroimmunol. 1989;23(1):29–33.PubMedGoogle Scholar
  54. 54.
    Vedeler CA, Scarpini E, Beretta S, Doronzo R, Matre R. The ontogenesis of Fc gamma receptors and complement receptors CR1 in human peripheral nerve. Acta Neuropathol. 1990;80(1):35–40.PubMedGoogle Scholar
  55. 55.
    Vedeler CA, Fitzpatrick-Klove L. Receptors for immunoglobulin G demonstrated on human peripheral nerve fibres by electron microscopy. Neurosci Lett. 1990;115(2–3):167–70.PubMedGoogle Scholar
  56. 56.
    Vedeler CA, Matre R, Kristoffersen EK, Ulvestad E. IgG Fc receptor heterogeneity in human peripheral nerves. Acta Neurol Scand. 1991;84(3):177–80.PubMedGoogle Scholar
  57. 57.
    Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A. 2010;107(26):11993–8.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Baetas-da-Cruz W, Alves L, Pessolani MC, Barbosa HS, Regnier-Vigouroux A, Corte-Real S, et al. Schwann cells express the macrophage mannose receptor and MHC class II. Do they have a role in antigen presentation? J Peripher Nerv Syst. 2009;14(2):84–92.PubMedGoogle Scholar
  59. 59.
    Reichert F, Saada A, Rotshenker S. Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci Off J Soc Neurosci. 1994;14(5 Pt 2):3231–45.Google Scholar
  60. 60.
    Saada A, Reichert F, Rotshenker S. Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J Cell Biol. 1996;133(1):159–67.PubMedGoogle Scholar
  61. 61.
    Teles RM, Krutzik SR, Ochoa MT, Oliveira RB, Sarno EN, Modlin RL. Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy. Infect Immun. 2010;78(11):4634–43.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes. J Neuroinflammation. 2011;8:24.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Stoll G, Schmidt B, Jander S, Toyka KV, Hartung HP. Presence of the terminal complement complex (C5b-9) precedes myelin degradation in immune-mediated demyelination of the rat peripheral nervous system. Ann Neurol. 1991;30(2):147–55.PubMedGoogle Scholar
  64. 64.
    Putzu GA, Figarella-Branger D, Bouvier-Labit C, Liprandi A, Bianco N, Pellissier JF. Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral nerve of Guillain-Barre syndrome. J Neurol Sci. 2000;174(1):16–21.PubMedGoogle Scholar
  65. 65.
    Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, et al. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron. 2005;47(2):215–29.PubMedGoogle Scholar
  66. 66.
    Lonigro A, Devaux JJ. Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. Brain J Neurol. 2009;132(Pt 1):260–73.Google Scholar
  67. 67.
    Halstead SK, Humphreys PD, Goodfellow JA, Wagner ER, Smith RA, Willison HJ. Complement inhibition abrogates nerve terminal injury in Miller Fisher syndrome. Ann Neurol. 2005;58(2):203–10.PubMedGoogle Scholar
  68. 68.
    Halstead SK, Humphreys PD, Zitman FM, Hamer J, Plomp JJ, Willison HJ. C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst. 2008;13(3):228–35.PubMedGoogle Scholar
  69. 69.
    Dailey AT, Avellino AM, Benthem L, Silver J, Kliot M. Complement depletion reduces macrophage infiltration and activation during Wallerian degeneration and axonal regeneration. J Neurosci Off J Soc Neurosci. 1998;18(17):6713–22.Google Scholar
  70. 70.
    Ramaglia V, King RH, Nourallah M, Wolterman R, de Jonge R, Ramkema M, et al. The membrane attack complex of the complement system is essential for rapid Wallerian degeneration. J Neurosci Off J Soc Neurosci. 2007;27(29):7663–72. Epub 2007/07/20.Google Scholar
  71. 71.
    Dashiell SM, Koski CL. Sublytic terminal complement complexes decrease P0 Gene expression in Schwann cells. J Neurochem. 1999;73(6):2321–30.PubMedGoogle Scholar
  72. 72.
    David S, Hila S, Fosbrink M, Rus H, Koski CL. JNK1 activation mediates C5b-9-induced P0 mRNA instability and P0 gene expression in Schwann cells. J Peripher Nerv Syst. 2006;11(1):77–87.PubMedGoogle Scholar
  73. 73.
    Dashiell SM, Rus H, Koski CL. Terminal complement complexes concomitantly stimulate proliferation and rescue of Schwann cells from apoptosis. Glia. 2000;30(2):187–98.PubMedGoogle Scholar
  74. 74.
    Hila S, Soane L, Koski CL. Sublytic C5b-9-stimulated Schwann cell survival through PI 3-kinase-mediated phosphorylation of BAD. Glia. 2001;36(1):58–67.PubMedGoogle Scholar
  75. 75.
    Dashiell SM, Vanguri P, Koski CL. Dibutyryl cyclic AMP and inflammatory cytokines mediate C3 expression in Schwann cells. Glia. 1997;20(4):308–21.PubMedGoogle Scholar
  76. 76.
    de Jonge RR, Vreijling JP, Meintjes A, Kwa MS, van Kampen AH, van Schaik IN, et al. Transcriptional profile of the human peripheral nervous system by serial analysis of gene expression. Genomics. 2003;82(2):97–108.PubMedGoogle Scholar
  77. 77.
    Funabashi K, Okada N, Matsuo S, Yamamoto T, Morgan BP, Okada H. Tissue distribution of complement regulatory membrane proteins in rats. Immunology. 1994;81(3):444–51.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Nose M, Katoh M, Okada N, Kyogoku M, Okada H. Tissue distribution of HRF20, a novel factor preventing the membrane attack of homologous complement, and its predominant expression on endothelial cells in vivo. Immunology. 1990;70(2):145–9.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Sawant-Mane S, Piddlesden SJ, Morgan BP, Holers VM, Koski CL. CD59 homologue regulates complement-dependent cytolysis of rat Schwann cells. J Neuroimmunol. 1996;69(1–2):63–71.PubMedGoogle Scholar
  80. 80.
    Koski CL, Estep AE, Sawant-Mane S, Shin ML, Highbarger L, Hansch GM. Complement regulatory molecules on human myelin and glial cells: differential expression affects the deposition of activated complement proteins. J Neurochem. 1996;66(1):303–12.PubMedGoogle Scholar
  81. 81.
    Vedeler CA, Conti G, Fujioka T, Scarpini E, Rostami A. The expression of CD59 in experimental allergic neuritis. J Neurol Sci. 1999;165(2):154–9.PubMedGoogle Scholar
  82. 82.
    Vedeler CA, Matre R. Complement receptors CR1 on human peripheral nerve fibres. J Neuroimmunol. 1988;17(4):315–22.PubMedGoogle Scholar
  83. 83.
    Vedeler CA, Conti G, Bannerman P, Pleasure D. Expression of genes encoding receptors for IgG (FcRIII) and for C3b/C4b (Crry) in rat sciatic nerve during development and Wallerian degeneration. J Neurosci Res. 1992;31(4):654–61.PubMedGoogle Scholar
  84. 84.
    Vedeler CA, Matre R. Peripheral nerve CR1 limit complement-mediated haemolysis. J Neuroimmunol. 1990;30(1):95–8.PubMedGoogle Scholar
  85. 85.
    Wohlleben G, Ibrahim SM, Schmidt J, Toyka KV, Hartung HP, Gold R. Regulation of Fas and FasL expression on rat Schwann cells. Glia. 2000;30(4):373–81.PubMedGoogle Scholar
  86. 86.
    Bonetti B, Valdo P, Ossi G, De Toni L, Masotto B, Marconi S, et al. T-cell cytotoxicity of human Schwann cells: TNFalpha promotes fasL-mediated apoptosis and IFN gamma perforin-mediated lysis. Glia. 2003;43(2):141–8.PubMedGoogle Scholar
  87. 87.
    Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;15(5):353–66.PubMedGoogle Scholar
  88. 88.
    Thornhill PB, Cohn JB, Stanford WL, Desbarats J. The adaptor protein Grb2 regulates cell surface Fas ligand in Schwann cells. Biochem Biophys Res Commun. 2008;376(2):341–6.PubMedGoogle Scholar
  89. 89.
    Mimouni-Rongy M, White JH, Weinstein DE, Desbarats J, Almazan G. Fas ligand acts as a counter-receptor in Schwann cells and induces the secretion of bioactive nerve growth factor. J Neuroimmunol. 2011;230(1–2):17–25.PubMedGoogle Scholar
  90. 90.
    Dace DS, Khan AA, Stark JL, Kelly J, Cross AH, Apte RS. Interleukin-10 overexpression promotes Fas-ligand-dependent chronic macrophage-mediated demyelinating polyneuropathy. PLoS ONE. 2009;4(9):e7121.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Tang W, Lv Q, Chen XF, Zou JJ, Liu ZM, Shi YQ. CD8(+) T cell-mediated cytotoxicity toward Schwann cells promotes diabetic peripheral neuropathy. Cell Physiol Biochem Int J Exp Cell Phys Biochem Pharmacol. 2013;32(4):827–37.Google Scholar
  92. 92.
    Mäurer M, Kobsar I, Berghoff M, Schmid CD, Carenini S, Martini R. Role of immune cells in animal models for inherited neuropathies: facts and visions. J Anat. 2002;200(4):405–14.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Carenini S, Mäurer M, Werner A, Blazyca H, Toyka KV, Schmid CD, et al. The role of macrophages in demyelinating peripheral nervous system of mice heterozygously deficient in p0. J Cell Biol. 2001;152(2):301–8.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Mäurer M, Muller M, Kobsar I, Leonhard C, Martini R, Kiefer R. Origin of pathogenic macrophages and endoneurial fibroblast-like cells in an animal model of inherited neuropathy. Mol Cell Neurosci. 2003;23(3):351–9.PubMedGoogle Scholar
  95. 95.
    Fischer S, Kleinschnitz C, Muller M, Kobsar I, Ip CW, Rollins B, et al. Monocyte chemoattractant protein-1 is a pathogenic component in a model for a hereditary peripheral neuropathy. Mol Cell Neurosci. 2008;37(2):359–66.PubMedGoogle Scholar
  96. 96.
    Groh J, Weis J, Zieger H, Stanley ER, Heuer H, Martini R. Colony-stimulating factor-1 mediates macrophage-related neural damage in a model for Charcot-Marie-Tooth disease type 1X. Brain J Neurol. 2012;135(Pt 1):88–104.Google Scholar
  97. 97.
    Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K, et al. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci Off J Soc Neurosci. 2004;24(8):1873–80.Google Scholar
  98. 98.
    Goncalves AF, Dias NG, Moransard M, Correia R, Pereira JA, Witke W, et al. Gelsolin is required for macrophage recruitment during remyelination of the peripheral nervous system. Glia. 2010;58(6):706–15.PubMedGoogle Scholar
  99. 99.
    Ozaki A, Nagai A, Lee YB, Myong NH, Kim SU. Expression of cytokines and cytokine receptors in human Schwann cells. Neuroreport. 2008;19(1):31–5.PubMedGoogle Scholar
  100. 100.
    Bergsteinsdottir K, Kingston A, Mirsky R, Jessen KR. Rat Schwann cells produce interleukin-1. J Neuroimmunol. 1991;34(1):15–23.PubMedGoogle Scholar
  101. 101.
    Skundric DS, Bealmear B, Lisak RP. Induced upregulation of IL-1, IL-1RA and IL-1R type I gene expression by Schwann cells. J Neuroimmunol. 1997;74(1–2):9–18.PubMedGoogle Scholar
  102. 102.
    Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T. Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem. 2003;278(33):30732–40. Epub 2003/06/11.PubMedGoogle Scholar
  103. 103.
    Skundric DS, Lisak RP, Rouhi M, Kieseier BC, Jung S, Hartung HP. Schwann cell-specific regulation of IL-1 and IL-1Ra during EAN: possible relevance for immune regulation at paranodal regions. J Neuroimmunol. 2001;116(1):74–82.PubMedGoogle Scholar
  104. 104.
    Lisak RP, Bealmear B, Ragheb S. Interleukin-1 alpha, but not interleukin-1 beta, is a co-mitogen for neonatal rat Schwann cells in vitro and acts via interleukin-1 receptors. J Neuroimmunol. 1994;55(2):171–7.PubMedGoogle Scholar
  105. 105.
    Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci Off J Soc Neurosci. 2002;22(8):3052–60.Google Scholar
  106. 106.
    Murwani R, Armati P. Peripheral nerve fibroblasts as a source of IL-6, TNFalpha and IL-1 and their modulation by IFNgamma. J Neurol Sci. 1998;161(2):99–109.PubMedGoogle Scholar
  107. 107.
    Kiguchi N, Maeda T, Kobayashi Y, Fukazawa Y, Kishioka S. Macrophage inflammatory protein-1alpha mediates the development of neuropathic pain following peripheral nerve injury through interleukin-1beta up-regulation. Pain. 2010;149(2):305–15.PubMedGoogle Scholar
  108. 108.
    Guenard V, Dinarello CA, Weston PJ, Aebischer P. Peripheral nerve regeneration is impeded by interleukin-1 receptor antagonist released from a polymeric guidance channel. J Neurosci Res. 1991;29(3):396–400.PubMedGoogle Scholar
  109. 109.
    Mey J, Schrage K, Wessels I, Vollpracht-Crijns I. Effects of inflammatory cytokines IL-1beta, IL-6, and TNFalpha on the intracellular localization of retinoid receptors in Schwann cells. Glia. 2007;55(2):152–64.PubMedGoogle Scholar
  110. 110.
    Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, et al. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol. 2012;198(1):127–41.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Zhelyaznik N, Mey J. Regulation of retinoic acid receptors alpha, beta and retinoid X receptor alpha after sciatic nerve injury. Neuroscience. 2006;141(4):1761–74.PubMedGoogle Scholar
  112. 112.
    Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature. 1987;330(6149):658–9.PubMedGoogle Scholar
  113. 113.
    Matsuoka I, Meyer M, Thoenen H. Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. J Neurosci Off J Soc Neurosci. 1991;11(10):3165–77.Google Scholar
  114. 114.
    Rutkowski JL, Tuite GF, Lincoln PM, Boyer PJ, Tennekoon GI, Kunkel SL. Signals for proinflammatory cytokine secretion by human Schwann cells. J Neuroimmunol. 1999;101(1):47–60.PubMedGoogle Scholar
  115. 115.
    Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem. 1995;64(2):850–8.PubMedGoogle Scholar
  116. 116.
    Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, et al. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res. 2000;885(2):172–81.PubMedGoogle Scholar
  117. 117.
    Murwani R, Hodgkinson S, Armati P. Tumor necrosis factor alpha and interleukin-6 mRNA expression in neonatal Lewis rat Schwann cells and a neonatal rat Schwann cell line following interferon gamma stimulation. J Neuroimmunol. 1996;71(1–2):65–71.PubMedGoogle Scholar
  118. 118.
    Ramesh G, Santana-Gould L, Inglis FM, England JD, Philipp MT. The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia. J Neuroinflammation. 2013;10:88.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Lisak RP, Bealmear B. Antibodies to interleukin-6 inhibit Schwann cell proliferation induced by unfractionated cytokines. J Neuroimmunol. 1994;50(2):127–32. Epub 1994/03/01.PubMedGoogle Scholar
  120. 120.
    Lara-Ramirez R, Segura-Anaya E, Martinez-Gomez A, Dent MA. Expression of interleukin-6 receptor alpha in normal and injured rat sciatic nerve. Neuroscience. 2008;152(3):601–8.PubMedGoogle Scholar
  121. 121.
    Hirota H, Kiyama H, Kishimoto T, Taga T. Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med. 1996;183(6):2627–34.PubMedGoogle Scholar
  122. 122.
    Haggiag S, Chebath J, Revel M. Induction of myelin gene expression in Schwann cell cultures by an interleukin-6 receptor-interleukin-6 chimera. FEBS Lett. 1999;457(2):200–4.PubMedGoogle Scholar
  123. 123.
    Haggiag S, Zhang PL, Slutzky G, Shinder V, Kumar A, Chebath J, et al. Stimulation of myelin gene expression in vitro and of sciatic nerve remyelination by interleukin-6 receptor-interleukin-6 chimera. J Neurosci Res. 2001;64(6):564–74.PubMedGoogle Scholar
  124. 124.
    Zhang PL, Levy AM, Ben-Simchon L, Haggiag S, Chebath J, Revel M. Induction of neuronal and myelin-related gene expression by IL-6-receptor/IL-6: a study on embryonic dorsal root ganglia cells and isolated Schwann cells. Exp Neurol. 2007;208(2):285–96.PubMedGoogle Scholar
  125. 125.
    Slutsky SG, Kamaraju AK, Levy AM, Chebath J, Revel M. Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. J Biol Chem. 2003;278(11):8960–8.PubMedGoogle Scholar
  126. 126.
    Kitamura H, Kamon H, Sawa S, Park SJ, Katunuma N, Ishihara K, et al. IL-6-STAT3 controls intracellular MHC class II alphabeta dimer level through cathepsin S activity in dendritic cells. Immunity. 2005;23(5):491–502.PubMedGoogle Scholar
  127. 127.
    Yu S, Duan RS, Chen Z, Quezada HC, Bao L, Nennesmo I, et al. Increased susceptibility to experimental autoimmune neuritis after upregulation of the autoreactive T cell response to peripheral myelin antigen in apolipoprotein E-deficient mice. J Neuropathol Exp Neurol. 2004;63(2):120–8.PubMedGoogle Scholar
  128. 128.
    Deretzi G, Pelidou S, Zou L, Quiding C, Mix E, Levi M, et al. Suppression of chronic experimental autoimmune neuritis by nasally administered recombinant rat interleukin-6. Immunology. 1999;97(1):69–76.PubMedCentralPubMedGoogle Scholar
  129. 129.
    Kurek JB, Austin L, Cheema SS, Bartlett PF, Murphy M. Up-regulation of leukaemia inhibitory factor and interleukin-6 in transected sciatic nerve and muscle following denervation. Neuromuscul Disord. 1996;6(2):105–14.PubMedGoogle Scholar
  130. 130.
    Carlson CD, Hart RP. Activation of acidic sphingomyelinase and protein kinase C zeta is required for IL-1 induction of LIF mRNA in a Schwann cell line. Glia. 1996;18(1):49–58.PubMedGoogle Scholar
  131. 131.
    Tofaris GK, Patterson PH, Jessen KR, Mirsky R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J Neurosci Off J Soc Neurosci. 2002;22(15):6696–703.Google Scholar
  132. 132.
    Sugiura S, Lahav R, Han J, Kou SY, Banner LR, de Pablo F, et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci. 2000;12(2):457–66.PubMedGoogle Scholar
  133. 133.
    Dowsing BJ, Romeo R, Morrison WA. Expression of leukemia inhibitory factor in human nerve following injury. J Neurotrauma. 2001;18(11):1279–87.PubMedGoogle Scholar
  134. 134.
    Turka LA, Goodman RE, Rutkowski JL, Sima AA, Merry A, Mitra RS, et al. Interleukin 12: a potential link between nerve cells and the immune response in inflammatory disorders. Mol Med. 1995;1(6):690–9.PubMedCentralPubMedGoogle Scholar
  135. 135.
    Zhu J, Bai XF, Mix E, Link H. Cytokine dichotomy in peripheral nervous system influences the outcome of experimental allergic neuritis: dynamics of mRNA expression for IL-1 beta, IL-6, IL-10, IL-12, TNF-alpha, TNF-beta, and cytolysin. Clin Immunol Immunopathol. 1997;84(1):85–94.PubMedGoogle Scholar
  136. 136.
    Deng H, Yang X, Jin T, Wu J, Hu LS, Chang M, et al. The role of IL-12 and TNF-alpha in AIDP and AMAN. Eur J Neurol. 2008;15(10):1100–5.PubMedGoogle Scholar
  137. 137.
    Pelidou SH, Deretzi G, Zou LP, Quiding C, Zhu J. Inflammation and severe demyelination in the peripheral nervous system induced by the intraneural injection of recombinant mouse interleukin-12. Scand J Immunol. 1999;50(1):39–44.PubMedGoogle Scholar
  138. 138.
    Bonetti B, Valdo P, Stegagno C, Tanel R, Zanusso GL, Ramarli D, et al. Tumor necrosis factor alpha and human Schwann cells: signalling and phenotype modulation without cell death. J Neuropathol Exp Neurol. 2000;59(1):74–84.PubMedGoogle Scholar
  139. 139.
    Qin Y, Cheng C, Wang H, Shao X, Gao Y, Shen A. TNF-alpha as an autocrine mediator and its role in the activation of Schwann cells. Neurochem Res. 2008;33(6):1077–84.PubMedGoogle Scholar
  140. 140.
    Taylor JM, Pollard JD. Soluble TNFR1 inhibits the development of experimental autoimmune neuritis by modulating blood-nerve-barrier permeability and inflammation. J Neuroimmunol. 2007;183(1–2):118–24.PubMedGoogle Scholar
  141. 141.
    Constantin G, Piccio L, Bussini S, Pizzuti A, Scarpini E, Baron P, et al. Induction of adhesion molecules on human schwann cells by proinflammatory cytokines, an immunofluorescence study. J Neurol Sci. 1999;170(2):124–30.PubMedGoogle Scholar
  142. 142.
    Sharief MK, McLean B, Thompson EJ. Elevated serum levels of tumor necrosis factor-alpha in Guillain-Barre syndrome. Ann Neurol. 1993;33(6):591–6.PubMedGoogle Scholar
  143. 143.
    Sharief MK, Ingram DA, Swash M, Thompson EJ. I.v. immunoglobulin reduces circulating proinflammatory cytokines in Guillain-Barre syndrome. Neurology. 1999;52(9):1833–8.PubMedGoogle Scholar
  144. 144.
    Gold R, Zielasek J, Kiefer R, Toyka KV, Hartung HP. Secretion of nitrite by Schwann cells and its effect on T-cell activation in vitro. Cell Immunol. 1996;168(1):69–77.PubMedGoogle Scholar
  145. 145.
    Sawada T, Sano M, Omura T, Omura K, Hasegawa T, Funahashi S, et al. Spatiotemporal quantification of tumor necrosis factor-alpha and interleukin-10 after crush injury in rat sciatic nerve utilizing immunohistochemistry. Neurosci Lett. 2007;417(1):55–60.PubMedGoogle Scholar
  146. 146.
    Be'eri H, Reichert F, Saada A, Rotshenker S. The cytokine network of wallerian degeneration: IL-10 and GM-CSF. Eur J Neurosci. 1998;10(8):2707–13.PubMedGoogle Scholar
  147. 147.
    Jander S, Pohl J, Gillen C, Stoll G. Differential expression of interleukin-10 mRNA in Wallerian degeneration and immune-mediated inflammation of the rat peripheral nervous system. J Neurosci Res. 1996;43(2):254–9.PubMedGoogle Scholar
  148. 148.
    Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A. 2000;97(19):10526–31.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Li X, Gonias SL, Campana WM. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia. 2005;51(4):254–65.PubMedGoogle Scholar
  150. 150.
    Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol. 2004;56(6):815–26. Epub 2004/10/08.PubMedGoogle Scholar
  151. 151.
    Keswani SC, Leitz GJ, Hoke A. Erythropoietin is neuroprotective in models of HIV sensory neuropathy. Neurosci Lett. 2004;371(2–3):102–5.PubMedGoogle Scholar
  152. 152.
    Keswani SC, Bosch-Marce M, Reed N, Fischer A, Semenza GL, Hoke A. Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin. Proc Natl Acad Sci U S A. 2011;108(12):4986–90.PubMedCentralPubMedGoogle Scholar
  153. 153.
    Inoue G, Gaultier A, Li X, Mantuano E, Richardson G, Takahashi K, et al. Erythropoietin promotes Schwann cell migration and assembly of the provisional extracellular matrix by recruiting beta1 integrin to the cell surface. Glia. 2010;58(4):399–409.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Ahn M, Moon C, Jeong C, Matsumoto Y, Koh CS, Shin T. Upregulation of erythropoietin in rat peripheral nervous system with experimental autoimmune neuritis. Brain Res. 2010;1333:82–90.PubMedGoogle Scholar
  155. 155.
    Luo B, Jiang M, Yang X, Zhang Z, Xiong J, Schluesener HJ, et al. Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis. Biochim Biophys Acta. 2013;1832(8):1260–70.PubMedGoogle Scholar
  156. 156.
    Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med. 2002;195(11):1499–505.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Stoll G, Schroeter M, Jander S, Siebert H, Wollrath A, Kleinschnitz C, et al. Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages. Brain Pathol. 2004;14(1):51–8.PubMedGoogle Scholar
  158. 158.
    D'Antonio M, Droggiti A, Feltri ML, Roes J, Wrabetz L, Mirsky R, et al. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves. J Neurosci Off J Soc Neurosci. 2006;26(33):8417–27.Google Scholar
  159. 159.
    Blondet B, Carpentier G, Ferry A, Courty J. Exogenous pleiotrophin applied to lesioned nerve impairs muscle reinnervation. Neurochem Res. 2006;31(7):907–13.PubMedGoogle Scholar
  160. 160.
    Blondet B, Carpentier G, Lafdil F, Courty J. Pleiotrophin cellular localization in nerve regeneration after peripheral nerve injury. J Histochem Cytochem. 2005;53(8):971–7.PubMedGoogle Scholar
  161. 161.
    Mi R, Chen W, Hoke A. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A. 2007;104(11):4664–9.PubMedCentralPubMedGoogle Scholar
  162. 162.
    Göttle P, Kremer D, Jander S, Odemis V, Engele J, Hartung HP, et al. Activation of CXCR7 receptor promotes oligodendroglial cell maturation. Ann Neurol. 2010;68(6):915–24.PubMedGoogle Scholar
  163. 163.
    Patel JR, Williams JL, Muccigrosso MM, Liu L, Sun T, Rubin JB, et al. Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. Acta Neuropathol. 2012;124(6):847–60.PubMedCentralPubMedGoogle Scholar
  164. 164.
    Toews AD, Barrett C, Morell P. Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J Neurosci Res. 1998;53(2):260–7.PubMedGoogle Scholar
  165. 165.
    Orlikowski D, Chazaud B, Plonquet A, Poron F, Sharshar T, Maison P, et al. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barre syndrome and experimental autoimmune neuritis. J Neuroimmunol. 2003;134(1–2):118–27.PubMedGoogle Scholar
  166. 166.
    Fischer S, Weishaupt A, Troppmair J, Martini R. Increase of MCP-1 (CCL2) in myelin mutant Schwann cells is mediated by MEK-ERK signaling pathway. Glia. 2008;56(8):836–43.PubMedGoogle Scholar
  167. 167.
    Groh J, Heinl K, Kohl B, Wessig C, Greeske J, Fischer S, et al. Attenuation of MCP-1/CCL2 expression ameliorates neuropathy in a mouse model for Charcot-Marie-Tooth 1X. Hum Mol Genet. 2010;19(18):3530–43.PubMedGoogle Scholar
  168. 168.
    Kohl B, Fischer S, Groh J, Wessig C, Martini R. MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-tooth 1A neuropathy. Am J Pathol. 2010;176(3):1390–9.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Taskinen HS, Roytta M. Increased expression of chemokines (MCP-1, MIP-1alpha, RANTES) after peripheral nerve transection. J Peripher Nerv Syst. 2000;5(2):75–81.PubMedGoogle Scholar
  170. 170.
    Saika F, Kiguchi N, Kobayashi Y, Fukazawa Y, Kishioka S. CC-chemokine ligand 4/macrophage inflammatory protein-1beta participates in the induction of neuropathic pain after peripheral nerve injury. Eur J Pain. 2012;16(9):1271–80.PubMedGoogle Scholar
  171. 171.
    Zou LP, Pelidou SH, Abbas N, Deretzi G, Mix E, Schaltzbeerg M, et al. Dynamics of production of MIP-1alpha, MCP-1 and MIP-2 and potential role of neutralization of these chemokines in the regulation of immune responses during experimental autoimmune neuritis in Lewis rats. J Neuroimmunol. 1999;98(2):168–75.PubMedGoogle Scholar
  172. 172.
    Kajii M, Kobayashi F, Kashihara J, Yuuki T, Kubo Y, Nakae T, et al. Intravenous immunoglobulin preparation attenuates neurological signs in rat experimental autoimmune neuritis with the suppression of macrophage inflammatory protein -1alpha expression. J Neuroimmunol. 2014;266(1–2):43–8.PubMedGoogle Scholar
  173. 173.
    Kim HJ, Jung CG, Jensen MA, Dukala D, Soliven B. Targeting of myelin protein zero in a spontaneous autoimmune polyneuropathy. J Immunol. 2008;181(12):8753–60.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Küry P, Greiner-Petter R, Cornely C, Jurgens T, Muller HW. Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells. J Neurosci Off J Soc Neurosci. 2002;22(17):7586–95.Google Scholar
  175. 175.
    Kieseier BC, Tani M, Mahad D, Oka N, Ho T, Woodroofe N, et al. Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. Brain J Neurol. 2002;125(Pt 4):823–34. Epub 2002/03/26.Google Scholar
  176. 176.
    Press R, Pashenkov M, Jin JP, Link H. Aberrated levels of cerebrospinal fluid chemokines in Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J Clin Immunol. 2003;23(4):259–67.PubMedGoogle Scholar
  177. 177.
    Barbaria EM, Kohl B, Buhren BA, Hasenpusch-Theil K, Kruse F, Kury P, et al. The alpha-chemokine CXCL14 is up-regulated in the sciatic nerve of a mouse model of Charcot-Marie-Tooth disease type 1A and alters myelin gene expression in cultured Schwann cells. Neurobiol Dis. 2009;33(3):448–58. Epub 2008/12/30.PubMedGoogle Scholar
  178. 178.
    Küry P, Koller H, Hamacher M, Cornely C, Hasse B, Muller HW. Cyclic AMP and tumor necrosis factor-alpha regulate CXCR4 gene expression in Schwann cells. Mol Cell Neurosci. 2003;24(1):1–9. Epub 2003/10/11.PubMedGoogle Scholar
  179. 179.
    Ödemis V, Boosmann K, Heinen A, Küry P, Engele J. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J Cell Sci. 2010;123(Pt 7):1081–8. Epub 2010/03/04.PubMedGoogle Scholar
  180. 180.
    Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR. TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci. 2006;31(3):407–15.PubMedGoogle Scholar
  181. 181.
    Oliveira AL, Antunes SL, Teles RM, da Silva AC C, Silva TP, Brandao Teles R, et al. Schwann cells producing matrix metalloproteinases under Mycobacterium leprae stimulation may play a role in the outcome of leprous neuropathy. J Neuropathol Exp Neurol. 2010;69(1):27–39.PubMedGoogle Scholar
  182. 182.
    Teles RM, Antunes SL, Jardim MR, Oliveira AL, Nery JA, Sales AM, et al. Expression of metalloproteinases (MMP-2, MMP-9, and TACE) and TNF-alpha in the nerves of leprosy patients. J Peripher Nerv Syst. 2007;12(3):195–204.PubMedGoogle Scholar
  183. 183.
    Liu H, Shiryaev SA, Chernov AV, Kim Y, Shubayev I, Remacle AG, et al. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation. 2012;9:119.PubMedCentralPubMedGoogle Scholar
  184. 184.
    Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, et al. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS ONE. 2012;7(3):e33664.PubMedCentralPubMedGoogle Scholar
  185. 185.
    Court FA, Zambroni D, Pavoni E, Colombelli C, Baragli C, Figlia G, et al. MMP2-9 cleavage of dystroglycan alters the size and molecular composition of Schwann cell domains. J Neurosci Off J Soc Neurosci. 2011;31(34):12208–17.Google Scholar
  186. 186.
    Chen Y, Wang H, Yoon SO, Xu X, Hottiger MO, Svaren J, et al. HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci. 2011;14(4):437–41.PubMedCentralPubMedGoogle Scholar
  187. 187.
    Limpert AS, Bai S, Narayan M, Wu J, Yoon SO, Carter BD, et al. NF-kappaB forms a complex with the chromatin remodeler BRG1 to regulate Schwann cell differentiation. J Neurosci Off J Soc Neurosci. 2013;33(6):2388–97.Google Scholar
  188. 188.
    Limpert AS, Carter BD. Axonal neuregulin 1 type III activates NF-kappaB in Schwann cells during myelin formation. J Biol Chem. 2010;285(22):16614–22.PubMedCentralPubMedGoogle Scholar
  189. 189.
    Nickols JC, Valentine W, Kanwal S, Carter BD. Activation of the transcription factor NF-kappaB in Schwann cells is required for peripheral myelin formation. Nat Neurosci. 2003;6(2):161–7.PubMedGoogle Scholar
  190. 190.
    Fu ES, Zhang YP, Sagen J, Candiotti KA, Morton PD, Liebl DJ, et al. Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain. 2010;148(3):509–18.PubMedCentralPubMedGoogle Scholar
  191. 191.
    Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ. Laminin activates NF-kappaB in Schwann cells to enhance neurite outgrowth. Neurosci Lett. 2008;439(1):42–6.PubMedGoogle Scholar
  192. 192.
    Sbai O, Devi TS, Melone MA, Feron F, Khrestchatisky M, Singh LP, et al. RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J Cell Sci. 2010;123(Pt 24):4332–9.PubMedGoogle Scholar
  193. 193.
    Cheng C, Qin Y, Shao X, Wang H, Gao Y, Cheng M, et al. Induction of TNF-alpha by LPS in Schwann cell is regulated by MAPK activation signals. Cell Mol Neurobiol. 2007;27(7):909–21.PubMedGoogle Scholar
  194. 194.
    Qin Y, Hua M, Duan Y, Gao Y, Shao X, Wang H, et al. TNF-alpha expression in Schwann cells is induced by LPS and NF-kappaB-dependent pathways. Neurochem Res. 2012;37(4):722–31.PubMedGoogle Scholar
  195. 195.
    Pereira RM, Calegari-Silva TC, Hernandez MO, Saliba AM, Redner P, Pessolani MC, et al. Mycobacterium leprae induces NF-kappaB-dependent transcription repression in human Schwann cells. Biochem Biophys Res Commun. 2005;335(1):20–6.PubMedGoogle Scholar
  196. 196.
    Laura M, Mazzeo A, Aguennouz M, Santoro M, Catania MA, Migliorato A, et al. Immunolocalization and activation of nuclear factor-kappaB in the sciatic nerves of rats with experimental autoimmune neuritis. J Neuroimmunol. 2006;174(1–2):32–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurology, Medical FacultyHeinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations