Advertisement

Journal of Clinical Immunology

, Volume 34, Issue 1, pp 58–67 | Cite as

Chronic Granulomatous Disease: Two Decades of Experience From a Tertiary Care Centre in North West India

  • Amit Rawat
  • Surjit Singh
  • Deepti Suri
  • Anju Gupta
  • Biman Saikia
  • Ranjana Walker Minz
  • Shobha Sehgal
  • Kim Vaiphei
  • C. Kamae
  • K. Honma
  • N. Nakagawa
  • K. Imai
  • S. Nonoyama
  • K. Oshima
  • N. Mitsuiki
  • O. Ohara
  • Koon-Wing Chan
  • Yu Lung Lau
Original Research

Abstract

Chronic granulomatous disease (CGD) results from an inherited defect in the phagocytic cells of the immune system. It is a genetically heterogenous disease caused by defects in one of the five major subunits of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. There is a paucity of data from India on CGD. We herein describe the clinical features in 17 children with CGD from a single tertiary referral center in India. A detailed analysis of the clinical features, laboratory investigations and outcome of 17 children 7 with X-linked (XL) and 10 with autosomal recessive (AR) form was performed. Diagnosis of CGD was based on an abnormal granulocyte oxidative burst evaluated by either Nitroblue Tetrazolium (NBT) test or flow cytometry based Dihyrorhodamine 123 assay or both. The molecular diagnosis was confirmed by genetic mutation analysis in 13 cases. The mean age at diagnosis and the age at onset of symptoms was significantly lower in children diagnosed with XL- CGD compared those with AR disease. Mutations were detected in CYBB gene in 6 patients with XL-CGD and NCF-1 gene mutations were observed in 7 cases of AR- CGD. The course and outcome of the disease was much worse in children diagnosed with X-linked form of disease compared to AR forms of the disease; 4/7 (57 %) children with X-CGD were dead at the time of data analysis. This is one of the largest series on chronic granulomatous disease from any developing country.

Keywords

Chronic granulomatous disease NADPH oxidase CYBB gene NCF-1 gene dihydrorhodamine 

Supplementary material

10875_2013_9963_Fig5_ESM.jpg (8 kb)
ESM 1

(JPEG 8 kb)

10875_2013_9963_MOESM1_ESM.tif (202 kb)
High resolution image (TIFF 202 kb)
10875_2013_9963_Fig6_ESM.jpg (9 kb)
ESM 2

(JPEG 8 kb)

10875_2013_9963_MOESM2_ESM.tif (247 kb)
High resolution image (TIFF 246 kb)

References

  1. 1.
    Winkelstein JA, Marino MC, Johnston Jr RB, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79(3):155–69.CrossRefGoogle Scholar
  2. 2.
    Janeway CACJ, Davidson M, Downey W, Gitlin D, Sullivan JC. Hypergammaglobulinemia associated with severe, recurrent, and chronic non-specific infection. Am J Dis Child. 1954;88:388–92.Google Scholar
  3. 3.
    Berendes H, Bridges RA, Good RA. A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med. 1957;40(5):309–12.PubMedGoogle Scholar
  4. 4.
    Bridges RA, Berendes H, Good RA. A fatal granulomatous disease of childhood; the clinical, pathological, and laboratory features of a new syndrome. Am J Dis Child. 1959;97(4):387–408.CrossRefGoogle Scholar
  5. 5.
    Kuijpers T, Lutter R. Inflammation and repeated infections in CGD: two sides of a coin. Cell Mol Life Sci. Jan;69(1):7–15.Google Scholar
  6. 6.
    Ushio-Fukai M. Localizing NADPH oxidase-derived ROS. Sci STKE. 2006;2006(349):re8.PubMedGoogle Scholar
  7. 7.
    Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114(15):3309–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Park BH, Holmes BM, Rodey GE, Good RA. Nitroblue-tetrazolium test in children with fatal granulomatous disease and newborn infants. Lancet. 1969;1(7586):157.PubMedCrossRefGoogle Scholar
  9. 9.
    Baehner RL, Nathan DG. Quantitative nitroblue tetrazolium test in chronic granulomatous disease. N Engl J Med. 1968;278(18):971–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Emmendorffer A, Hecht M, Lohmann-Matthes ML, Roesler J. A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. J Immunol Methods. 1990;131(2):269–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Roesler J, Hecht M, Freihorst J, Lohmann-Matthes ML, Emmendorffer A. Diagnosis of chronic granulomatous disease and of its mode of inheritance by dihydrorhodamine 123 and flow microcytofluorometry. Eur J Pediatr. 1991;150(3):161–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Salaria M, Singh S, Kumar L, Datta U, Sehgal S. Chronic granulomatous disease. Indian Pediatr. 1999;36(6):594–6.PubMedGoogle Scholar
  13. 13.
    Nair PS, Moorthy PK, Suprakasan S, Jayapalan S, Preethi K. Chronic granulomatous disease. Indian J Dermatol Venereol Leprol. 2005;71(3):199–201.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinto LM, Udwadia ZF. A 24-year-old man with giddiness, hemoptysis, and skin lesions. Chest. 2008;134(5):1084–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Soneja M, Batra A, Vikram NK, Ahuja A, Mohan A, Sood R. Actinomycosis and nocardiosis co-infection in chronic granulomatous disease. J Assoc Physicians India. Apr;60:66–8.Google Scholar
  16. 16.
    Verma S, Sharma PK, Sivanandan S, Rana N, Saini S, Lodha R, et al. Spectrum of primary immune deficiency at a tertiary care hospital. Indian J Pediatr. 2008;75(2):143–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Ahlin A, De Boer M, Roos D, Leusen J, Smith CI, Sundin U, et al. Prevalence, genetics and clinical presentation of chronic granulomatous disease in Sweden. Acta Paediatr. 1995;84(12):1386–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Liese J, Kloos S, Jendrossek V, Petropoulou T, Wintergerst U, Notheis G, et al. Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. J Pediatr. 2000;137(5):687–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Koker MY, Camcioglu Y, van Leeuwen K, Kilic SS, Barlan I, Yilmaz M, et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol. Jul 30.Google Scholar
  20. 20.
    El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, et al. Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia. J Hum Genet. 2006;51(10):887–95.PubMedCrossRefGoogle Scholar
  21. 21.
    Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009;461(7263):489–94.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with Chronic Granulomatous Disease: an Italian multicenter study. Clin Immunol. 2008;126(2):155–64.PubMedCrossRefGoogle Scholar
  23. 23.
    van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Finn A, Hadzic N, Morgan G, Strobel S, Levinsky RJ. Prognosis of chronic granulomatous disease. Arch Dis Child. 1990;65(9):942–5.PubMedCrossRefGoogle Scholar
  25. 25.
    van Montfrans JM, Rudd E, van de Corput L, Henter JI, Nikkels P, Wulffraat N, et al. Fatal hemophagocytic lymphohistiocytosis in X-linked chronic granulomatous disease associated with a perforin gene variant. Pediatr Blood Cancer. 2009;52(4):527–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Parekh C, Hofstra T, Church JA, Coates TD. Hemophagocytic lymphohistiocytosis in children with chronic granulomatous disease. Pediatr Blood Cancer. Mar;56(3):460–2.Google Scholar
  27. 27.
    Alvarez-Cardona A, Rodriguez-Lozano AL, Blancas-Galicia L, Rivas-Larrauri FE, Yamazaki-Nakashimada MA. Intravenous immunoglobulin treatment for macrophage activation syndrome complicating chronic granulomatous disease. J Clin Immunol. Apr;32(2):207–11.Google Scholar
  28. 28.
    Lee PP, Chan KW, Jiang L, Chen T, Li C, Lee TL, et al. Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for tuberculosis. Pediatr Infect Dis J. 2008;27(3):224–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Bustamante J, Aksu G, Vogt G, de Beaucoudrey L, Genel F, Chapgier A, et al. BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol. 2007;120(1):32–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. Mar;12(3):213–21.Google Scholar
  31. 31.
    Hasui M. Chronic granulomatous disease in Japan: incidence and natural history. The Study Group of Phagocyte Disorders of Japan. Pediatr Int. 1999;41(5):589–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Mouy R, Fischer A, Vilmer E, Seger R, Griscelli C. Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr. 1989;114(4 Pt 1):555–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, et al. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis. Oct 15;45(3):246–65.Google Scholar
  34. 34.
    Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C, de Boer M, et al. Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis. Apr 15;44(4):291–9.Google Scholar
  35. 35.
    Casimir CM, Bu-Ghanim HN, Rodaway AR, Bentley DL, Rowe P, Segal AW. Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc Natl Acad Sci U S A. 1991;88(7):2753–7.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gorlach A, Lee PL, Roesler J, Hopkins PJ, Christensen B, Green ED, et al. A p47-phox pseudogene carries the most common mutation causing p47-phox- deficient chronic granulomatous disease. J Clin Invest. 1997;100(8):1907–18.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. Dec 30;363(27):2600–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amit Rawat
    • 1
  • Surjit Singh
    • 1
  • Deepti Suri
    • 1
  • Anju Gupta
    • 1
  • Biman Saikia
    • 2
  • Ranjana Walker Minz
    • 2
  • Shobha Sehgal
    • 2
  • Kim Vaiphei
    • 3
  • C. Kamae
    • 4
  • K. Honma
    • 4
  • N. Nakagawa
    • 4
  • K. Imai
    • 4
  • S. Nonoyama
    • 4
  • K. Oshima
    • 5
  • N. Mitsuiki
    • 5
  • O. Ohara
    • 5
  • Koon-Wing Chan
    • 6
  • Yu Lung Lau
    • 6
  1. 1.Advanced Pediatrics CentrePostgraduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Department of ImmunopathologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  3. 3.Department of HistopathologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  4. 4.Department of PediatricsNational Defense Medical CollegeTokorozawaJapan
  5. 5.Kazusa DNA Research InstituteKisarazuJapan
  6. 6.Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, LKS Faculty of MedicineThe University of Hong KongHong KongChina

Personalised recommendations