Advertisement

Journal of Clinical Immunology

, Volume 33, Issue 8, pp 1341–1348 | Cite as

Anti-Cytokine Autoantibodies Preceding Onset of Autoimmune Polyendocrine Syndrome Type I Features in Early Childhood

  • A. S. B. Wolff
  • A. K. Sarkadi
  • L. Maródi
  • J. Kärner
  • E. Orlova
  • B. E. V. Oftedal
  • K. Kisand
  • É. Oláh
  • A. Meloni
  • A. G. Myhre
  • E. S. Husebye
  • R. Motaghedi
  • J. Perheentupa
  • P. Peterson
  • N. Willcox
  • A. Meager
Article

Abstract

Purpose

Almost all patients with autoimmune polyendocrine syndrome (APS)-I have high titer neutralizing autoantibodies to type I interferons (IFN), especially IFN-ω and IFN-α2, whatever their clinical features and onset-ages. About 90 % also have antibodies to interleukin (IL)-17A, IL-17F and/or IL-22; they correlate with the chronic mucocutaneous candidiasis (CMC) that affects ~90 % of patients. Our aim was to explore how early the manifestations and endocrine and cytokine autoantibodies appear in young APS-I patients. That may hold clues to very early events in the autoimmunization process in these patients.

Methods

Clinical investigations and autoantibody measurements in 13 APS-I patients sampled before age 7 years, and 3 pre-symptomatic siblings with AIRE-mutations in both alleles.

Results

Antibody titers were already high against IFN-α2 and IFN-ω at age 6 months in one sibling—8 months before onset of APS-I—and also against IL-22 at 7 months in another (still unaffected at age 5 years). In 12 of the 13 APS-I patients, antibody levels were high against IFN-ω and/or IL-22 when first tested, but only modestly positive against IFN-ω in one patient who had only hypo-parathyroidism. Endocrine organ-specific antibodies were present at age 6 months in one sibling, and as early as 36 and 48 months in two of the six informative subjects.

Conclusion

This is the first study to collate the onset of clinical features, cytokine and endocrine autoantibodies in APS-I infants and siblings. The highly restricted early autoantibody responses and clinical features they show are not easily explained by mere loss of broad-specific self-tolerance inducing mechanisms, but hint at some more sharply focused early event(s) in autoimmunization.

Key words

APECED AIRE autoimmune polyendocrine syndrome autoimmune immuno-deficiency cytokine autoantibodies Interferon omega Interleukin 22 Interleukin 17 candidiasis autoimmunization 

Abbreviations

AD

Addison’s disease

AIRE

Autoimmune regulator

APS

Autoimmune polyendocrine syndrome

CMC

Chronic mucocutaneous candidiasis

ELISA

Enzyme-linked immunosorbent assay

HP

Hypoparathyroidism

IL

Interleukin

IFN

Interferon

IPEX

Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome

Th

Helper T-cell

Notes

Acknowledgments

Anette B. Wolff thanks the Bergen Medical Research Foundation and Western Norway Health Authorities for funding this study. This work was also supported by the UD Faculty of Medicine Research Fund (Bridging Fund 2012) and the TÁMOP 4.2.2.A-11/1/KONV-2012-0023 “VÉD-ELEM” project to LM.

We are grateful to Elisabeth Halvorsen for performing RIAs, Dr. Phillipp Pymm for help and advice and Prof NK Maclaren and Dr. S. Ten for patient samples.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10875_2013_9938_MOESM1_ESM.doc (40 kb)
Supplementary Table 1 (DOC 40 kb)

References

  1. 1.
    Anderson MS et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.PubMedCrossRefGoogle Scholar
  2. 2.
    Husebye ES et al. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med. 2009;265(5):514–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006;91(8):2843–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Meager A et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006;3(7):e289.PubMedCrossRefGoogle Scholar
  5. 5.
    Meloni A et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008;93(11):4389–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Kisand K et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207(2):299–308.PubMedCrossRefGoogle Scholar
  7. 7.
    Puel A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Oftedal BE et al. Radioimmunoassay for autoantibodies against interferon omega; its use in the diagnosis of autoimmune polyendocrine syndrome type I. Clin Immunol. 2008;129:163–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Meloni A et al. Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients. J Clin Endocrinol Metab. 2012;97(4):1114–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Orlova EM et al. Autoimmune polyglandular syndrome type 1 in Russian patients: clinical variants and autoimmune regulator mutations. Horm Res Paediatr. 2010;73(6):449–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Tóth B et al. Novel sequence variation of AIRE and detection of interferon-omega antibodies in early infancy. Clin Endocrinol (Oxf). 2010;72(5):641–7.CrossRefGoogle Scholar
  12. 12.
    Wolff AS et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab. 2007;92(2):595–603.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolff AS et al. Flow cytometry study of blood cell subtypes reflects autoimmune and inflammatory processes in autoimmune polyendocrine syndrome type I. Scand J Immunol. 2010;71(6): 459–67.Google Scholar
  14. 14.
    Ekwall O et al. Identification of tryptophan hydroxylase as an intestinal autoantigen. Lancet. 1998;352(9124):279–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Oftedal BE et al. Measuring autoantibodies against IL-17F and IL-22 in autoimmune polyendocrine syndrome type I by radioligand binding assay using fusion proteins. Scand J Immunol. 2011;74(3):327–33.Google Scholar
  16. 16.
    Meager A et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–36.Google Scholar
  17. 17.
    Kärner J et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin Exp Immunol. 2013;171(3):263–72.Google Scholar
  18. 18.
    Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Truck J, Pollard AJ. Challenges in immunisation against bacterial infection in children. Early Hum Dev. 2010;86(11):695–701.PubMedCrossRefGoogle Scholar
  20. 20.
    Hendrikx LH et al. Different IgG-subclass distributions after whole-cell and acellular pertussis infant primary vaccinations in healthy and pertussis infected children. Vaccine. 2011;29(40):6874–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Scherbaum WA, Berg PA. Development of adrenocortical failure in non-Addisonian patients with antibodies to adrenal cortex. A clinical follow-up study. Clin Endocrinol (Oxf). 1982;16(4):345–52.CrossRefGoogle Scholar
  22. 22.
    Zhang L, Eisenbarth GS. Prediction and prevention of Type 1 diabetes mellitus. J Diabetes. 2011;3(1):48–57.Google Scholar
  23. 23.
    Kisand K et al. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41(6):1517–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Gardner JM et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321(5890):843–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee JW et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol. 2007;8(2):181–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Poliani PL et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am J Pathol. 2010;176(3):1104–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Meager A, Peterson P, Willcox N. Thymic aberrations and type-I Interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes. Clin Exp Immunol. 2008;154:141–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. S. B. Wolff
    • 1
  • A. K. Sarkadi
    • 2
  • L. Maródi
    • 2
  • J. Kärner
    • 3
  • E. Orlova
    • 4
  • B. E. V. Oftedal
    • 1
  • K. Kisand
    • 3
  • É. Oláh
    • 2
  • A. Meloni
    • 5
  • A. G. Myhre
    • 6
  • E. S. Husebye
    • 1
    • 7
  • R. Motaghedi
    • 8
  • J. Perheentupa
    • 9
  • P. Peterson
    • 3
  • N. Willcox
    • 10
  • A. Meager
    • 11
  1. 1.Department of Clinical ScienceUniversity of BergenBergenNorway
  2. 2.Department of Infectious and Pediatric ImmunologyUniversity of Debrecen Medical and Health Science CenterDebrecenHungary
  3. 3.Molecular Pathology Group, Institute of General and Molecular PathologyUniversity of TartuTartuEstonia
  4. 4.Endocrinological Research Centre, Institute of Paediatric EndocrinologyMoscowRussia
  5. 5.Pediatric Clinic II, Ospedale Microcitemico and Department of Biomedical and Biotechno-logical ScienceUniversity of CagliariCagliariItaly
  6. 6.Department of PediatricsOslo University HospitalOsloNorway
  7. 7.Department of MedicineHaukeland University HospitalBergenNorway
  8. 8.Department of Endocrinology and MetabolismSeattle Children’s Hospital-University of WashingtonSeattleUSA
  9. 9.The Hospital for Children and AdolescentsUniversity of HelsinkiHelsinkiFinland
  10. 10.Neurosciences Group, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
  11. 11.Biotherapeutics GroupNational Institute for Biological Standards and ControlPotter’s BarUK

Personalised recommendations