Journal of Clinical Immunology

, Volume 33, Issue 7, pp 1156–1164 | Cite as

The Natural History of Children with Severe Combined Immunodeficiency: Baseline Features of the First Fifty Patients of the Primary Immune Deficiency Treatment Consortium Prospective Study 6901

  • Christopher C. Dvorak
  • Morton J. Cowan
  • Brent R. Logan
  • Luigi D. Notarangelo
  • Linda M. Griffith
  • Jennifer M. Puck
  • Donald B. Kohn
  • William T. Shearer
  • Richard J. O’Reilly
  • Thomas A. Fleisher
  • Sung-Yun Pai
  • I. Celine Hanson
  • Michael A. Pulsipher
  • Ramsay Fuleihan
  • Alexandra Filipovich
  • Frederick Goldman
  • Neena Kapoor
  • Trudy Small
  • Angela Smith
  • Ka-Wah Chan
  • Geoff Cuvelier
  • Jennifer Heimall
  • Alan Knutsen
  • Brett Loechelt
  • Theodore Moore
  • Rebecca H. Buckley
Original Research

Abstract

The Primary Immune Deficiency Treatment Consortium (PIDTC) consists of 33 centers in North America. We hypothesized that the analysis of uniform data on patients with severe combined immunodeficiency (SCID) enrolled in a prospective protocol will identify variables that contribute to optimal outcomes following treatment. We report baseline clinical, immunologic, and genetic features of the first 50 patients enrolled, and the initial therapies administered, reflecting current practice in the diagnosis and treatment of both typical (n = 37) and atypical forms (n = 13) of SCID. From August 2010 to May 2012, patients with suspected SCID underwent evaluation and therapy per local center practices. Diagnostic information was reviewed by the PIDTC eligibility review panel, and hematopoietic cell transplantation (HCT) details were obtained from the Center for International Blood and Marrow Transplant Research. Most patients (92 %) had mutations in a known SCID gene. Half of the patients were diagnosed by newborn screening or family history, were younger than those diagnosed by clinical signs (median 15 vs. 181 days; P = <0.0001), and went to HCT at a median of 67 days vs. 214 days of life (P = <0.0001). Most patients (92 %) were treated with HCT within 1–2 months of diagnosis. Three patients were treated with gene therapy and 1 with enzyme replacement. The PIDTC plans to enroll over 250 such patients and analyze short and long-term outcomes for factors beneficial or deleterious to survival, clinical outcome, and T- and B-cell reconstitution, and which biomarkers are predictive of these outcomes.

Keywords

Severe combined immunodeficiency hematopoietic cell transplantation newborn screening 

Notes

Acknowledgements

This paper is dedicated to the memory of Dr. Trudy Small, a gifted physician who dedicated her life to improving transplant outcomes for children with immunodeficiencies. The authors thank Elizabeth Dunn and Jessica Carlson for their tireless efforts organizing the PIDTC, Yanning Wang for expert technical assistance from the UCSF core lab, and Mary Eapen, MD and Qun Xiang from the CIBMTR for assistance with data analysis. Data collection for this study were in-part facilitated through the CIBMTR (U24-CA76518; PI Horowitz MM). The PIDTC is a part of NIH Rare Diseases Clinical Research Network, with the DMCC at the University of South Florida. Portions of this data were presented as an oral abstract at the annual meeting of the American Society for Blood and Marrow Transplant, Salt Lake City, UT, 14 February 2013 (abstract no. 93). Funding and/or programmatic support for this project has been provided by Grant #1U54AI082973 from National Institute of Allergy and Infectious Diseases and the NIH Office of Rare Diseases Research, National Center for Advancing Translational Science. The views expressed are those of the authors and do not represent the position of the NIAID, ORDR/NCATS, NIH, or the US Government.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22:625–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Notarangelo L. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Herz W, Bousfiha A, Casanova J, Chapel H, Conley M, Cunningham-Rundles C et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2(54).Google Scholar
  4. 4.
    Parvaneh N, Casanova J, Notarangelo L, Conley M. Primary immunodeficiencies: A rapidly evolving story. J Allergy Clin Immunol. 2013;131(2):314–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Puck J. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates: The winner is T-cell receptor excision circles. J Allergy Clin Immunol. 2012;129(3):607–16.PubMedCrossRefGoogle Scholar
  6. 6.
    Buckley R. The long quest for neonatal screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):597–604.PubMedCrossRefGoogle Scholar
  7. 7.
    Railey M, Lokhnygina Y, Buckley R. Long-term clinical outcome of patients with severe combined immunodeficiency who received related donor bone marrow transplants without pretransplant chemotherapy or post-transplant GVHD prophylaxis. J Pediatr. 2009;155(6):834–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Gaspar H, Aiuti A, Porta F, Candotti F, Hershfield M, Notarangelo L. How I treat ADA deficiency. Blood. 2009;114(17):3524–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy for primary adaptive immune deficiencies. J Allergy Clin Immunol. 2011;127(6):1356–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Fernandes J, Rocha V, Labopin M, Neven B, Moshous D, Gennery A, et al. Transplantation in patients with SCID: mismatched related stem cells or unrelated cord blood? Blood. 2012;119(12):2949–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Bertrand Y, Landais P, Friedrich W, Gerritsen B, Morgan G, Fasth A, et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the european society for immunodeficiency. J Pediatr. 1999;134(6):740–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gennery A, Slatter M, Grandin L, Taupin P, Cant A, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602–10. e1-11.PubMedCrossRefGoogle Scholar
  14. 14.
    Dvorak C, Cowan M. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin N Am. 2010;30(1):125–42.CrossRefGoogle Scholar
  15. 15.
    Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D, et al. Long-term outcome after haematopoietic stem cell transplantation of a single-centre cohort of 90 patients with severe combined immunodeficiency: Long-term outcome of HSCT in SCID. Blood. 2009;113(7):4114–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Buckley RH, Schiff SE, Schiff RI, Markert L, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340(7):508–16.PubMedCrossRefGoogle Scholar
  17. 17.
    Dvorak C, Hung G, Horn B, Dunn E, Oon C, Cowan M. Megadose CD34(+) cell grafts improve recovery of T cell engraftment but not B cell immunity in patients with severe combined immunodeficiency disease undergoing haplocompatible nonmyeloablative transplantation. Biol Blood Marrow Transplant. 2008;14(10):1125–33.PubMedCrossRefGoogle Scholar
  18. 18.
    Grunebaum E, Mazzolari E, Porta F, Dallera D, Atkinson A, Reid B, et al. Bone marrow transplantation for severe combined immune deficiency. JAMA. 2006;295(5):508–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Haddad E, Le Deist F, Aucouturier P, Cavazzana-Calvo M, Blanche S, De Saint Basile G, et al. Long-term chimerism and B-cell function after bone marrow transplantation in patients with severe combined immunodeficiency with B cells: A single-center study of 22 patients. Blood. 1999;94(8):2923–30.PubMedGoogle Scholar
  20. 20.
    Mazzolari E, Forino C, Guerci S, LA Imberti L, Porta F, Notarangelo LD. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J Allergy Clin Immunol. 2007;120(4):892–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Buckley R. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49(1–3):25–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Buckley R, Win C, Moser B, Parrott R, Sajaroff E, Sarzotti-Kelsoe M. Post-Transplantation B Cell Function in Different Molecular Types of SCID. J Clin Immunol. 2013;33:96–110.PubMedCrossRefGoogle Scholar
  23. 23.
    Patel N, Chinen J, Rosenblatt H, Hanson I, Krance R, Paul M, et al. Outcomes of patients with severe combined immunodeficiency treated with hematopoietic stem cell transplantation with and without preconditioning. J Allergy Clin Immunol. 2009;124(5):1062–9. e1-4.PubMedCrossRefGoogle Scholar
  24. 24.
    Sarzotti-Kelsoe M, Win C, Parrott R, Cooney M, Moser B, Roberts J, et al. Thymic output, T-cell diversity, and T-cell function in long-term human SCID chimeras. Blood. 2009;114(7):1445–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Lebet T, Chiles R, Hsu A, Mansfield E, Warrington J, Puck J. Mutations causing severe combined immunodeficiency: detection with a custom resequencing microarray. Genet Med. 2008;10(8):575–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Cole C, Freitas A, Clifton M, Durham M. Hereditary multiple intestinal atresias: 2 new cases and review of the literature. J Pediatr Surg. 2010;45(4):E21–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet. 2003;361(9357):553–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82.PubMedGoogle Scholar
  30. 30.
    van der Burg M, Gennery A. The expanding clinical and immunological spectrum of severe combined immunodeficiency. Eur J Pediatr. 2011;170(5):561–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Titman P, Pink E, Skucek E, O’Hanlon KCT, Gaspar J, Xu-Bayford J, et al. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood. 2008;112(9):3907–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher C. Dvorak
    • 1
  • Morton J. Cowan
    • 1
  • Brent R. Logan
    • 2
  • Luigi D. Notarangelo
    • 3
  • Linda M. Griffith
    • 4
  • Jennifer M. Puck
    • 1
  • Donald B. Kohn
    • 5
  • William T. Shearer
    • 6
  • Richard J. O’Reilly
    • 7
  • Thomas A. Fleisher
    • 8
  • Sung-Yun Pai
    • 9
  • I. Celine Hanson
    • 6
  • Michael A. Pulsipher
    • 10
  • Ramsay Fuleihan
    • 11
  • Alexandra Filipovich
    • 12
  • Frederick Goldman
    • 13
  • Neena Kapoor
    • 14
  • Trudy Small
    • 7
  • Angela Smith
    • 15
  • Ka-Wah Chan
    • 16
  • Geoff Cuvelier
    • 17
  • Jennifer Heimall
    • 18
  • Alan Knutsen
    • 19
  • Brett Loechelt
    • 20
  • Theodore Moore
    • 21
  • Rebecca H. Buckley
    • 22
  1. 1.Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant, Benioff Children’s HospitalUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Division of Biostatistics, Center for International Blood and Marrow Transplant ResearchMedical College of WisconsinMilwaukeeUSA
  3. 3.Division of Immunology and The Manton Center for Orphan Disease Research, Children’s Hospital BostonHarvard Medical SchoolBostonUSA
  4. 4.Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA
  5. 5.Departments of Microbiology, Immunology & Molecular Genetics and Pediatrics, University of California Los AngelesLos AngelesUSA
  6. 6.Departments of Pediatrics and Pathology & ImmunologyBaylor College of MedicineHoustonUSA
  7. 7.Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  8. 8.Department of Laboratory MedicineNational Institutes of HealthBethesdaUSA
  9. 9.Division of Hematology and Oncology, Boston Children’s Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer InstituteBostonUSA
  10. 10.Division of Hematology and Hematologic Malignancies, Primary Children’s Medical CenterUniversity of Utah School of Medicine/Huntsman Cancer InstituteSalt Lake CityUSA
  11. 11.Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of MedicineChicagoUSA
  12. 12.Division of Hematology/OncologCincinnati Children’s HospitalCincinnatiUSA
  13. 13.Division of Hematology and Oncology, The Children’s Hospital of AlabamaUniversity of AlabamaTuscaloosaUSA
  14. 14.Division of Research Immunology and Bone Marrow TransplantationChildren’s Hospital of Los AngelesLos AngelesUSA
  15. 15.Division of Pediatric Blood and Marrow TransplantationUniversity of MinnesotaMinneapolisUSA
  16. 16.Pediatric Stem Cell Transplantation ProgramTexas Transplant InstituteSan AntonioUSA
  17. 17.Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada
  18. 18.Division of Allergy/ImmunologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  19. 19.Division of Pediatric Allergy & ImmunologySt. Louis UniversitySt LouisUSA
  20. 20.Blood and Marrow Transplantation, Allergy and ImmunologyChildren’s National Medical CenterWashingtonUSA
  21. 21.Division of Pediatric Hematology/OncologyUniversity of California Los AngelesLos AngelesUSA
  22. 22.Departments of Pediatrics & ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations