Journal of Clinical Immunology

, Volume 33, Issue 1, pp 22–29 | Cite as

Increased T-Cell Activation and Th1 Cytokine Concentrations Prior to the Diagnosis of B-Cell Lymphoma in HIV Infected Patients

  • David Eric Ouedraogo
  • Alain Makinson
  • Nils Kuster
  • Nicolas Nagot
  • Pierre-Alain Rubbo
  • Karine Bollore
  • Vincent Foulongne
  • Guillaume Cartron
  • Daniel Olive
  • Jacques Reynes
  • Jean-Pierre Vendrell
  • Edouard Tuaillon
Original Research

Abstract

Background

Despite the use of combined antiretroviral therapy, HIV-infected individuals have a higher risk of developing B-cell lymphoma compared to the general population. We aim to explore whether lymphocyte activation, increase in Th1 response as well as markers of EBV reactivation, may precede lymphoma diagnosis.

Methods

Thirteen cases and 26 controls matched on CD4+ T-cell count and HIV plasma viral load were identified. Samples were collected 0 to 5 years prior to B-cell lymphoma diagnosis. Seven out of 13 (54 %) and 16/26 (61.5 %) of cases and controls were receiving antiretroviral therapy at the time of sampling, respectively. CD8+ T-cell activation and Th1 cytokine concentrations were measured before lymphoma onset, together with IgG antibodies directed against viral capsid antigen (VCA) and serum levels of EBV DNA.

Results

A higher level of CD8+ T-cell activation was observed in patients developing lymphoma. Four out of seven Th1 cytokine serum concentrations were significantly higher in patients with lymphoma than in the control group: IL-2R, IL-12p40/70, IFN-γ-inducible protein 10 (IP-10) and monokine induced by IFN-γ (MIG). Anti-VCA IgG level were significantly higher in cases than in controls. Four cases (30 %) but no controls had detectable EBV DNA in serum.

Conclusion

A higher level of T-cell activation, Th1 cytokine serum concentration and markers of EBV replication, preceded B-cell lymphoma diagnosis. This may suggest that viral antigen stimulation is associated with the genesis of lymphoma in HIV-infected patients.

Keywords

CD8+ T-cells hyperactivation EBV reactivation HIV-associated lymphoma 

Notes

Acknowledgments

We are grateful to Infectiopole Sud for their financial support. We would also like to thank Emily Witty and Johannes Viljoen for the English review of the manuscript. This work was presented at the 6ème conférence francophone VIH/SIDA, AFRAVIH 2012 (Geneva, Switzerland, 25th to 28th of March 2012).

Conflict of interest

The authors have no financial conflict of interest.

References

  1. 1.
    Biggar RJ, Chaturvedi AK, Goedert JJ, Engels EA. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst. 2007;99:962–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Engels EA, Pfeiffer RM, Goedert JJ, Virgo P, McNeel TS, Scoppa SM, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20:1645–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Crum-Cianflone N, Hullsiek KH, Marconi V, Weintrob A, Ganesan A, Barthel RV, et al. Trends in the incidence of cancers among HIV-infected persons and the impact of antiretroviral therapy: a 20-year cohort study. AIDS. 2009;23:41–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Tulpule A, Levine A. AIDS-related lymphoma. Blood Rev. 1999;13:147–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Epeldegui M, Widney DP, Martinez-Maza O. Pathogenesis of AIDS lymphoma: role of oncogenic viruses and B cell activation-associated molecular lesions. Curr Opin Oncol. 2006;18:444–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Breen EC, Hussain SK, Magpantay L, Jacobson LP, Detels R, Rabkin CS, et al. B-cell stimulatory cytokines and markers of immune activation are elevated several years prior to the diagnosis of systemic AIDS-associated non-Hodgkin B-cell lymphoma. Cancer Epidemiol Biomarkers Prev. 2011;20:1303–14.PubMedCrossRefGoogle Scholar
  7. 7.
    d’Ettorre G, Paiardini M, Ceccarelli G, Silvestri G, Vullo V. HIV-associated immune activation: from bench to bedside. AIDS Res Hum Retrovir. 2011;27:355–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Ortiz AM, Silvestri G. Immunopathogenesis of AIDS. Curr Infect Dis Rep. 2009;11:239–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park JH, et al. CD4 and CD8 T cell immune activation during chronic HIV infection: roles of homeostasis, HIV, type I IFN, and IL-7. J Immunol. 2011;186:2106–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214:231–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Deeks SG, Walker BD. The immune response to AIDS virus infection: good, bad, or both? J Clin Invest. 2004;113:808–10.PubMedGoogle Scholar
  12. 12.
    Hazenberg MD, Stuart JW, Otto SA, Borleffs JC, Boucher CA, de Boer RJ, et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood. 2000;95:249–55.PubMedGoogle Scholar
  13. 13.
    French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis. 2009;200:1212–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Petrara MR, Cattelan AM, Zanchetta M, Sasset L, Freguja R, Gianesin K, et al. Epstein-Barr virus load and immune activation in human immunodeficiency virus type 1-infected patients. J Clin Virol. 2012;53:195–200.PubMedCrossRefGoogle Scholar
  15. 15.
    Haas A, Zimmermann K, Oxenius A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol. 2011;85:12102–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.PubMedCrossRefGoogle Scholar
  17. 17.
    Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984;310:1225–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 2003;4:22–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Tirelli U, Spina M, Gaidano G, Vaccher E, Franceschi S, Carbone A. Epidemiological, biological and clinical features of HIV-related lymphomas in the era of highly active antiretroviral therapy. AIDS. 2000;14:1675–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Besson C, Goubar A, Gabarre J, Rozenbaum W, Pialoux G, Chatelet FP, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98:2339–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Tuaillon E, Al Tabaa Y, Baillat V, Segondy M, Picot MC, Reynes J, et al. Close association of CD8+/CD38 bright with HIV-1 replication and complex relationship with CD4+ T-cell count. Cytom B Clin Cytom. 2009;76:249–60.CrossRefGoogle Scholar
  24. 24.
    Regidor DL, Detels R, Breen EC, Widney DP, Jacobson LP, Palella F, et al. Effect of highly active antiretroviral therapy on biomarkers of B-lymphocyte activation and inflammation. AIDS. 2011;25:303–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Kamat A, Misra V, Cassol E, Ancuta P, Yan Z, Li C, et al. A plasma biomarker signature of immune activation in HIV patients on antiretroviral therapy. PLoS One. 2012;7:e30881.PubMedCrossRefGoogle Scholar
  26. 26.
    Breen EC, Boscardin WJ, Detels R, Jacobson LP, Smith MW, O’Brien SJ, et al. Non-Hodgkin’s B cell lymphoma in persons with acquired immunodeficiency syndrome is associated with increased serum levels of IL10, or the IL10 promoter -592 C/C genotype. Clin Immunol. 2003;109:119–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Breen EC, Fatahi S, Epeldegui M, Boscardin WJ, Detels R, Martinez-Maza O. Elevated serum soluble CD30 precedes the development of AIDS-associated non-Hodgkin’s B cell lymphoma. Tumour Biol. 2006;27:187–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Breen EC, van der Meijden M, Cumberland W, Kishimoto T, Detels R, Martinez-Maza O. The development of AIDS-associated Burkitt’s/small noncleaved cell lymphoma is preceded by elevated serum levels of interleukin 6. Clin Immunol. 1999;92:293–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Wong HL, Breen EC, Pfeiffer RM, Aissani B, Martinson JJ, Margolick JB, et al. Cytokine signaling pathway polymorphisms and AIDS-related non-Hodgkin lymphoma risk in the multicenter AIDS cohort study. AIDS. 2010;24:1025–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Widney D, Gundapp G, Said JW, van der Meijden M, Bonavida B, Demidem A, et al. Aberrant expression of CD27 and soluble CD27 (sCD27) in HIV infection and in AIDS-associated lymphoma. Clin Immunol. 1999;93:114–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Stevens SJ, Blank BS, Smits PH, Meenhorst PL, Middeldorp JM. High Epstein-Barr virus (EBV) DNA loads in HIV-infected patients: correlation with antiretroviral therapy and quantitative EBV serology. AIDS. 2002;16:993–1001.PubMedCrossRefGoogle Scholar
  32. 32.
    Levacher M, Hulstaert F, Tallet S, Ullery S, Pocidalo JJ, Bach BA. The significance of activation markers on CD8 lymphocytes in human immunodeficiency syndrome: staging and prognostic value. Clin Exp Immunol. 1992;90:376–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Bofill M, Mocroft A, Lipman M, Medina E, Borthwick NJ, Sabin CA, et al. Increased numbers of primed activated CD8+ CD38+ CD45RO+ T cells predict the decline of CD4+ T cells in HIV-1-infected patients. AIDS. 1996;10:827–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Z, Cumberland WG, Hultin LE, Kaplan AH, Detels R, Giorgi JV. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;18:332–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999;179:859–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Lederman MM, Kalish LA, Asmuth D, Fiebig E, Mileno M, Busch MP. ‘Modeling’ relationships among HIV-1 replication, immune activation and CD4+ T-cell losses using adjusted correlative analyses. AIDS. 2000;14:951–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol. 2008;126:235–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Lehmann C, Harper JM, Taubert D, Hartmann P, Fatkenheuer G, Jung N, et al. Increased interferon alpha expression in circulating plasmacytoid dendritic cells of HIV-1-infected patients. J Acquir Immune Defic Syndr. 2008;48:522–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Padovan E, Spagnoli GC, Ferrantini M, Heberer M. IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J Leukoc Biol. 2002;71:669–76.PubMedGoogle Scholar
  40. 40.
    Gonzalez VD, Landay AL, Sandberg JK. Innate immunity and chronic immune activation in HCV/HIV-1 co-infection. Clin Immunol. 2010;135:12–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Roe B, Coughlan S, Hassan J, Grogan A, Farrell G, Norris S, et al. Elevated serum levels of interferon- gamma -inducible protein-10 in patients coinfected with hepatitis C virus and HIV. J Infect Dis. 2007;196:1053–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Teruya-Feldstein J, Jaffe ES, Burd PR, Kanegane H, Kingma DW, Wilson WH, et al. The role of Mig, the monokine induced by interferon-gamma, and IP-10, the interferon-gamma-inducible protein-10, in tissue necrosis and vascular damage associated with Epstein-Barr virus-positive lymphoproliferative disease. Blood. 1997;90:4099–105.PubMedGoogle Scholar
  43. 43.
    Teruya-Feldstein J, Jaffe ES, Burd PR, Kingma DW, Setsuda JE, Tosato G. Differential chemokine expression in tissues involved by Hodgkin’s disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood. 1999;93:2463–70.PubMedGoogle Scholar
  44. 44.
    Holscher C. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol. 2004;193:1–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.PubMedCrossRefGoogle Scholar
  46. 46.
    Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity. 2001;14:105–10.PubMedGoogle Scholar
  47. 47.
    Yoneda S, Umemura T, Joshita S, Ichijo T, Matsumoto A, Yoshizawa K, et al. Serum chemokine levels are associated with the outcome of pegylated interferon and ribavirin therapy in patients with chronic hepatitis C. Hepatol Res. 2011;41:587–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Landgren O, Goedert JJ, Rabkin CS, Wilson WH, Dunleavy K, Kyle RA, et al. Circulating serum free light chains as predictive markers of AIDS-related lymphoma. J Clin Oncol. 2010;28:773–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med. 2006;12:289–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Besson C, Amiel C, Le-Pendeven C, Brice P, Ferme C, Carde P, et al. Positive correlation between Epstein-Barr virus viral load and anti-viral capsid immunoglobulin G titers determined for Hodgkin’s lymphoma patients and their relatives. J Clin Microbiol. 2006;44:47–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Stevens SJ, Smits PH, Verkuijlen SA, Rockx DA, van Gorp EC, Mulder JW, et al. Aberrant Epstein-Barr virus persistence in HIV carriers is characterized by anti-Epstein-Barr virus IgA and high cellular viral loads with restricted transcription. AIDS. 2007;21:2141–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Gasser O, Wolbers M, Steffen I, Hirsch HH, Battegay M, Hess C. Increased Epstein-Barr virus-specific antibody-levels in HIV-infected individuals developing primary central nervous system lymphoma. AIDS. 2007;21:1664–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320:689–95.PubMedCrossRefGoogle Scholar
  54. 54.
    de-The G, Geser A, Day NE, Tukei PM, Williams EH, Beri DP, et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature. 1978;274:756–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Fan H, Kim SC, Chima CO, Israel BF, Lawless KM, Eagan PA, et al. Epstein-Barr viral load as a marker of lymphoma in AIDS patients. J Med Virol. 2005;75:59–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Navarro JT, Hernandez A, Rodriguez-Manzano J, Mate JL, Grau J, Morgades M, et al. Plasma Epstein-Barr viral load measurement as a diagnostic marker of lymphoma in HIV-infected patients. Med Clin (Barc). 2010;135:485–90.CrossRefGoogle Scholar
  57. 57.
    Al Tabaa Y, Tuaillon E, Jeziorski E, Ouedraogo DE, Bollore K, Rubbo PA, et al. B-cell polyclonal activation and Epstein-Barr viral abortive lytic cycle are two key features in acute infectious mononucleosis. J Clin Virol. 2011.Google Scholar
  58. 58.
    Piriou ER, van Dort K, Nanlohy NM, Miedema F, van Oers MH, van Baarle D. Altered EBV viral load setpoint after HIV seroconversion is in accordance with lack of predictive value of EBV load for the occurrence of AIDS-related non-Hodgkin lymphoma. J Immunol. 2004;172:6931–7.PubMedGoogle Scholar
  59. 59.
    Al Tabaa Y, Tuaillon E, Bollore K, Foulongne V, Petitjean G, Seigneurin JM, et al. Functional Epstein-Barr virus reservoir in plasma cells derived from infected peripheral blood memory B cells. Blood. 2009;113:604–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Bonnet F, Jouvencel AC, Parrens M, Leon MJ, Cotto E, Garrigue I, et al. A longitudinal and prospective study of Epstein-Barr virus load in AIDS-related non-Hodgkin lymphoma. J Clin Virol. 2006;36:258–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Drouet E, Brousset P, Fares F, Icart J, Verniol C, Meggetto F, et al. High Epstein-Barr virus serum load and elevated titers of anti-ZEBRA antibodies in patients with EBV-harboring tumor cells of Hodgkin’s disease. J Med Virol. 1999;57:383–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David Eric Ouedraogo
    • 1
    • 2
    • 3
    • 8
  • Alain Makinson
    • 4
  • Nils Kuster
    • 3
  • Nicolas Nagot
    • 1
    • 3
  • Pierre-Alain Rubbo
    • 1
    • 2
    • 3
  • Karine Bollore
    • 1
    • 2
    • 3
  • Vincent Foulongne
    • 1
    • 3
  • Guillaume Cartron
    • 6
    • 7
  • Daniel Olive
    • 5
  • Jacques Reynes
    • 4
  • Jean-Pierre Vendrell
    • 1
    • 2
    • 3
  • Edouard Tuaillon
    • 1
    • 2
    • 3
  1. 1.INSERM U1058, Université Montpellier 1MontpellierFrance
  2. 2.CHRU de Montpellier, Institut de Recherche en Biothérapies, Laboratoire des Cellules Circulantes Rares HumainesMontpellierFrance
  3. 3.CHRU de Montpellier, Laboratoire de Bactériologie-VirologieMontpellierFrance
  4. 4.Département des Maladies Infectieuses TropicalesCHRU de Montpellier, UMI 233MontpellierFrance
  5. 5.Université de la Méditerranée, IBISA Cancer Immunomonitoring Platform Institut Paoli CalmettesMarseilleFrance
  6. 6.Département d’HématologieCHRU de MontpellierMontpellierFrance
  7. 7.UMR-CNRS 5235, Université Montpellier 2MontpellierFrance
  8. 8.Institute of Research in BiotherapyCHU Montpellier Hôpital Saint-EloiMontpellier Cedex 5France

Personalised recommendations