Journal of Clinical Immunology

, Volume 33, Issue 1, pp 235–245

Th2 Responses in OVA-Sensitized BALB/c Mice Are Down-Modulated By Mycobacterium bovis BCG Treatment

  • Ana Cláudia Carvalho Gouveia
  • Alessa Sin Singer Brugiolo
  • Caio César Souza Alves
  • Flávia Márcia Castro Silva
  • Felipe Pereira Mesquita
  • Jacy Gameiro
  • Ana Paula Ferreira
Original Research



This study aimed to determine whether Mycobacterium bovis Bacillus Calmette-Guérin (BCG) treatment can reverse an established allergic airway inflammation in a BALB/c mouse model of ovalbumin (OVA)-induced airway inflammation.


OVA sensitized BALB/c mice were challenged with aerosolized OVA on days 28 to 30, 34, 41 and 63. Mice were intranasal treated with BCG on days 35 and 42. Twenty-four hours after the last challenge, blood samples were collected to detect anti-OVA immunoglobulin isotypes, and bronchoalveolar lavage (BAL) was harvested for cell count. Additionally, lungs were collected for histological analysis, detection of the eosinophil peroxidase (EPO) activity and measurement of cytokines and CCL11. The expression of CTLA-4, Foxp3 and IL-10 was also determined in lung tissue by flow cytometry.


BCG treatment was able to inhibit an established allergic Th2-response, by decreasing the allergen-induced eosinophilic inflammation, EPO activity, levels of CCL11 and IL-4, serum levels of IgE and IgG1. Mycobacteria treatment increased lung levels of IFN-γ, IL-10 and TGF-β, and expressions of Foxp3 and CTLA-4 in CD4+T cells. Additionally, an increased production of IL-10 by CD8+ T cells was observed, even though no detectable changes in CD4+IL-10+ was noticed.


BCG treatment inhibits features of allergic airway inflammation and the results suggest that the mechanism underlying the down-regulatory effects of BCG on OVA-induced airway inflammation appear to be associated with the induction of both Th1 and T regulatory immune responses.


Asthma allergic airway inflammation Mycobacterium bovis BCG IgE Th1/Th2 cytokines regulatory T cells 


  1. 1.
    PJ B. Immunology of asthma and chronic obstructive pulmonary disease. Nature reviews Immunology. 2008;8(3):183-92. Epub 2008/02/16.Google Scholar
  2. 2.
    Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clinical and experimental immunology. 2001;125(2):177–83. Epub 2001/09/01.PubMedCrossRefGoogle Scholar
  3. 3.
    Barnes PJ. Pathophysiology of allergic inflammation. Immunological reviews. 2011;242(1):31–50. Epub 2011/06/21.PubMedCrossRefGoogle Scholar
  4. 4.
    Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60. Epub 1989/11/18.PubMedCrossRefGoogle Scholar
  5. 5.
    Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. American journal of respiratory and critical care medicine. 2011;184(2):198–205. Epub 2011/04/08.PubMedCrossRefGoogle Scholar
  6. 6.
    Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, et al. Exposure to environmental microorganisms and childhood asthma. The New England journal of medicine. 2011;364(8):701–9. Epub 2011/02/25.PubMedCrossRefGoogle Scholar
  7. 7.
    Herz U, Gerhold K, Gruber C, Braun A, Wahn U, Renz H, et al. BCG infection suppresses allergic sensitization and development of increased airway reactivity in an animal model. The Journal of allergy and clinical immunology. 1998;102(5):867–74. Epub 1998/11/18.PubMedCrossRefGoogle Scholar
  8. 8.
    Erb KJ, Holloway JW, Sobeck A, Moll H, Le Gros G. Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. The Journal of experimental medicine. 1998;187(4):561–9. Epub 1998/03/28.PubMedCrossRefGoogle Scholar
  9. 9.
    Teixeira LK, Fonseca BP, Barboza BA, Viola JP. The role of interferon-gamma on immune and allergic responses. Memorias do Instituto Oswaldo Cruz. 2005;100 Suppl 1:137–44. Epub 2005/06/18.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang J, Wakeham J, Harkness R, Xing Z. Macrophages are a significant source of type 1 cytokines during mycobacterial infection. The Journal of clinical investigation. 1999;103(7):1023–9. Epub 1999/04/09.PubMedCrossRefGoogle Scholar
  11. 11.
    Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM, et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nature medicine. 2002;8(6):625–9. Epub 2002/06/04.PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson DS, Regulatory T. cells and asthma. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2009;39(9):1314–23. Epub 2009/06/23.CrossRefGoogle Scholar
  13. 13.
    Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nature reviews Immunology. 2005;5(4):271–83. Epub 2005/03/19.PubMedCrossRefGoogle Scholar
  14. 14.
    Joetham A, Takeda K, Taube C, Miyahara N, Matsubara S, Koya T, et al. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J Immunol. 2007;178(3):1433–42. Epub 2007/01/24.PubMedGoogle Scholar
  15. 15.
    Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature reviews Immunology. 2011;11(12):852–63. Epub 2011/11/26.PubMedCrossRefGoogle Scholar
  16. 16.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology. 2003;4(4):330–6. Epub 2003/03/04.PubMedCrossRefGoogle Scholar
  17. 17.
    Alenmyr L, Matheu V, Uller L, Greiff L, Malm-Erjefalt M, Ljunggren HG, et al. Blockade of CTLA-4 promotes airway inflammation in naive mice exposed to aerosolized allergen but fails to prevent inhalation tolerance. Scandinavian journal of immunology. 2005;62(5):437–44. Epub 2005/11/25.PubMedCrossRefGoogle Scholar
  18. 18.
    Li Q, Shen HH. Neonatal bacillus Calmette-Guerin vaccination inhibits de novo allergic inflammatory response in mice via alteration of CD4+CD25+ T-regulatory cells. Acta pharmacologica Sinica. 2009;30(1):125–33. Epub 2008/12/09.PubMedCrossRefGoogle Scholar
  19. 19.
    Choi IS, Lin XH, Koh YA, Cui Y. Inoculation route-dependent and allergen-specific suppressive effects of bacille Calmette-Guerin vaccination on asthmatic reactions in BALB/c mice. Lung. 2007;185(3):179–86. Epub 2007/04/05.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee M, Kim S, Kwon OK, Oh SR, Lee HK, Ahn K. Anti-inflammatory and anti-asthmatic effects of resveratrol, a polyphenolic stilbene, in a mouse model of allergic asthma. International immunopharmacology. 2009;9(4):418–24. Epub 2009/02/03.PubMedCrossRefGoogle Scholar
  21. 21.
    Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald M, et al. Global strategy for asthma management and prevention: GINA executive summary. The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology. 2008;31(1):143–78. Epub 2008/01/02.CrossRefGoogle Scholar
  22. 22.
    Nahori MA, Lagranderie M, Lefort J, Thouron F, Joseph D, Winter N, et al. Effects of Mycobacterium bovis BCG on the development of allergic inflammation and bronchial hyperresponsiveness in hyper-IgE BP2 mice vaccinated as newborns. Vaccine. 2001;19(11–12):1484–95. Epub 2001/02/13.PubMedCrossRefGoogle Scholar
  23. 23.
    Ahrens B, Gruber C, Rha RD, Freund T, Quarcoo D, Awagyan A, et al. BCG priming of dendritic cells enhances T regulatory and Th1 function and suppresses allergen-induced Th2 function in vitro and in vivo. International archives of allergy and immunology. 2009;150(3):210–20. Epub 2009/06/06.PubMedCrossRefGoogle Scholar
  24. 24.
    Zuany-Amorim C, Manlius C, Trifilieff A, Brunet LR, Rook G, Bowen G, et al. Long-term protective and antigen-specific effect of heat-killed Mycobacterium vaccae in a murine model of allergic pulmonary inflammation. J Immunol. 2002;169(3):1492–9. Epub 2002/07/23.PubMedGoogle Scholar
  25. 25.
    Lagranderie M, Nahori MA, Balazuc AM, Kiefer-Biasizzo H, Silva JR L, Milon G, et al. Dendritic cells recruited to the lung shortly after intranasal delivery of Mycobacterium bovis BCG drive the primary immune response towards a type 1 cytokine production. Immunology. 2003;108(3):352–64. Epub 2003/02/27.PubMedCrossRefGoogle Scholar
  26. 26.
    Koch M, Witzenrath M, Reuter C, Herma M, Schutte H, Suttorp N, et al. Role of local pulmonary IFN-gamma expression in murine allergic airway inflammation. American journal of respiratory cell and molecular biology. 2006;35(2):211–9. Epub 2006/03/18.PubMedCrossRefGoogle Scholar
  27. 27.
    Smart JM, Horak E, Kemp AS, Robertson CF, Tang ML. Polyclonal and allergen-induced cytokine responses in adults with asthma: resolution of asthma is associated with normalization of IFN-gamma responses. The Journal of allergy and clinical immunology. 2002;110(3):450–6. Epub 2002/09/05.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang X, Fan Y, Wang S, Han X, Yang J, Bilenki L, et al. Mycobacterial infection inhibits established allergic inflammatory responses via alteration of cytokine production and vascular cell adhesion molecule-1 expression. Immunology. 2002;105(3):336–43. Epub 2002/03/29.PubMedCrossRefGoogle Scholar
  29. 29.
    Yokoi T, Amakawa R, Tanijiri T, Sugimoto H, Torii Y, Amuro H, et al. Mycobacterium bovis Bacillus Calmette-Guerin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-activated dendritic cells. International immunology. 2008;20(10):1321–9. Epub 2008/08/16.PubMedCrossRefGoogle Scholar
  30. 30.
    Christ AP, Rodriguez D, Bortolatto J, Borducchi E, Keller A, Mucida D, et al. Enhancement of Th1 lung immunity induced by recombinant Mycobacterium bovis Bacillus Calmette-Guerin attenuates airway allergic disease. American journal of respiratory cell and molecular biology. 2010;43(2):243–52. Epub 2009/10/07.PubMedCrossRefGoogle Scholar
  31. 31.
    Ou-Yang HF, Hu XB, Ti XY, Shi JR, Li SJ, Qi HW, et al. Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG. Immunology. 2009;128(1 Suppl):e343–52. Epub 2009/02/05.PubMedCrossRefGoogle Scholar
  32. 32.
    Deng Y, Chen W, Zang N, Li S, Luo Y, Ni K, et al. The antiasthma effect of neonatal BCG vaccination does not depend on the Th17/Th1 but IL-17/IFN-gamma balance in a BALB/c mouse asthma model. Journal of clinical immunology. 2011;31(3):419–29. Epub 2011/02/23.PubMedCrossRefGoogle Scholar
  33. 33.
    Sehra S, Pynaert G, Tournoy K, Haegeman A, Matthys P, Tagawa Y, et al. Airway IgG counteracts specific and bystander allergen-triggered pulmonary inflammation by a mechanism dependent on Fc gamma R and IFN-gamma. J Immunol. 2003;171(4):2080–9. Epub 2003/08/07.PubMedGoogle Scholar
  34. 34.
    Christy AJ, Dharman K, Dhandapaani G, Palaniyandi K, Gupta UD, Gupta P, et al. Epitope based recombinant BCG vaccine elicits specific Th1 polarized immune responses in BALB/c mice. Vaccine. 2012;30(7):1364–70. Epub 2011/12/28.PubMedCrossRefGoogle Scholar
  35. 35.
    Adams VC, Hunt JR, Martinelli R, Palmer R, Rook GA, Brunet LR. Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. European journal of immunology. 2004;34(3):631–8. Epub 2004/03/03.PubMedCrossRefGoogle Scholar
  36. 36.
    Bilenki L, Gao X, Wang S, Yang J, Fan Y, Han X, et al. Dendritic cells from mycobacteria-infected mice inhibits established allergic airway inflammatory responses to ragweed via IL-10- and IL-12-secreting mechanisms. J Immunol. 2010;184(12):7288–96. Epub 2010/05/21.PubMedCrossRefGoogle Scholar
  37. 37.
    Madura Larsen J, Benn CS, Fillie Y, van der Kleij D, Aaby P, Yazdanbakhsh M. BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology. 2007;121(2):276–82. Epub 2007/03/21.PubMedCrossRefGoogle Scholar
  38. 38.
    Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nature reviews Immunology. 2008;8(3):218–30. Epub 2008/02/16.PubMedCrossRefGoogle Scholar
  39. 39.
    Gao X, Bai H, Cheng J, Fan Y, Wang S, Jiao L, et al. CD8alpha+ and CD8alpha- DC subsets from BCG-infected mice inhibit allergic Th2-cell responses by enhancing Th1-cell and Treg-cell activity respectively. Eur J Immunol. 2012;42(1):165–75. Epub 2011/10/20.Google Scholar
  40. 40.
    Trandem K, Zhao J, Fleming E, Perlman S. Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis. J Immunol. 2011;186(6):3642–52. Epub 2011/02/15.Google Scholar
  41. 41.
    Renz H, Lack G, Saloga J, Schwinzer R, Bradley K, Loader J, et al. Inhibition of IgE production and normalization of airways responsiveness by sensitized CD8 T cells in a mouse model of allergen-induced sensitization. J Immunol. 1994;152(1):351–60. Epub 1994/01/01.Google Scholar
  42. 42.
    Thomas MJ, MacAry PA, Noble A, Askenase PW, Kemeny DM. T cytotoxic 1 and T cytotoxic 2 CD8 T cells both inhibit IgE responses. Int Arch Allergy Imm. 2001;124(1-3):187–9. Epub 2001/04/18.Google Scholar
  43. 43.
    Smith TR, Kumar V. Revival of CD8+ Treg-mediated suppression. Trends Immunol. 2008;29(7):337–42. Epub 2008/06/03.Google Scholar
  44. 44.
    Niederkorn JY. Emerging concepts in CD8(+) T regulatory cells. Curr Opin Immunol. 2008;20(3):327–31. Epub 2008/04/15.Google Scholar
  45. 45.
    Yamada A, Ohshima Y, Yasutomi M, Ogura K, Tokuriki S, Naiki H, et al. Antigen-primed splenic CD8+ T cells impede the development of oral antigen-induced allergic diarrhea. Allergy Clin Immun. 2009;123(4):889–94. Epub 2009/02/10.Google Scholar
  46. 46.
    Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, et al. Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J Exp Med. 1996;183(4):1719–29. Epub 1996/04/01.Google Scholar
  47. 47.
    Stock P, Kallinich T, Akbari O, Quarcoo D, Gerhold K, Wahn U, et al. CD8(+) T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation. Eur J Immunol. 2004;34(7):1817–27. Epub 2004/06/24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ana Cláudia Carvalho Gouveia
    • 1
  • Alessa Sin Singer Brugiolo
    • 1
  • Caio César Souza Alves
    • 1
  • Flávia Márcia Castro Silva
    • 1
  • Felipe Pereira Mesquita
    • 1
  • Jacy Gameiro
    • 1
  • Ana Paula Ferreira
    • 1
  1. 1.Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations