Journal of Clinical Immunology

, Volume 32, Issue 6, pp 1360–1371 | Cite as

D-chiro-inositol Negatively Regulates the Formation of Multinucleated Osteoclasts by Down-Regulating NFATc1

  • Jungeun Yu
  • Seunga Choi
  • Eui-Soon Park
  • Bongjin Shin
  • Jiyeon Yu
  • Seoung Hoon Lee
  • Masamichi Takami
  • Jong Soon Kang
  • Hyungun Meong
  • Jaerang RhoEmail author



Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation.


To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP+ mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1).


We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1.


We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


D-chiro-inositol RANKL NFATc1 osteoclast differentiation 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009-0072758 & NRF-2009-008146) and the Ministry of National Defense Foundation Grant (ADD: 08-10-02).

Conflict of Interest

All authors have no financial conflicts of interest.

Supplementary material

10875_2012_9722_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)
10875_2012_9722_MOESM2_ESM.pptx (746 kb)
Supplemental Figure 1 (PPTX 745 kb)
10875_2012_9722_MOESM3_ESM.pptx (53 kb)
Supplemental Figure 2 (PPTX 52 kb)
10875_2012_9722_MOESM4_ESM.pptx (113 kb)
Supplemental Figure 3 (PPTX 112 kb)


  1. 1.
    Rho J, Takami M, Choi Y. Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells. 2004;17(1):1–9.PubMedGoogle Scholar
  2. 2.
    Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev. 2007;7(4):292–304.CrossRefGoogle Scholar
  3. 3.
    Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Guise TA, Mundy GR. Cancer and bone. Endocr Rev. 1998;19(1):18–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Inaba M. Secondary osteoporosis: thyrotoxicosis, rheumatoid arthritis, and diabetes mellitus. J Bone Miner Metab. 2004;22(4):287–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22(9):1317–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Rakel A, Sheehy O, Rahme E, LeLorier J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 2008;34(3):193–205.PubMedCrossRefGoogle Scholar
  8. 8.
    Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8(4):178–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Vestergaard P. Bone metabolism in type 2 diabetes and role of thiazolidinediones. Curr Opin Endocrinol Diabetes Obes. 2009;16(2):125–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Davis A, Christiansen M, Horowitz JF, Klein S, Hellerstein MK, Ostlund Jr RE. Effect of pinitol treatment on insulin action in subjects with insulin resistance. Diabetes Care. 2000;23(7):1000–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Asplin I, Galasko G, Larner J. Chiro-inositol deficiency and insulin resistance: a comparison of the chiro-inositol- and the myo-inositol-containing insulin mediators isolated from urine, hemodialysate, and muscle of control and type II diabetic subjects. Proc Natl Acad Sci USA. 1993;90(13):5924–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Bates SH, Jones RB, Bailey CJ. Insulin-like effect of pinitol. Br J Pharmacol. 2000;130(8):1944–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Dang NT, Mukai R, Yoshida K, Ashida H. D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci Biotechnol Biochem. 2010;74(5):1062–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Geethan PK, Prince PS. Antihyperlipidemic effect of D-pinitol on streptozotocin-induced diabetic Wistar rats. J Biochem Mol Toxicol. 2008;22(4):220–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim JI, Kim JC, Kang MJ, Lee MS, Kim JJ, Cha IJ. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur J Clin Nutr. 2005;59(3):456–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Sivakumar S, Palsamy P, Subramanian SP. Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats. Free Radic Res. 2010;44(6):668–78.PubMedCrossRefGoogle Scholar
  17. 17.
    Bhat KA, Shah BA, Gupta KK, Pandey A, Bani S, Taneja SC. Semi-synthetic analogs of pinitol as potential inhibitors of TNF-alpha cytokine expression in human neutrophils. Bioorg Med Chem Lett. 2009;19(7):1939–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee JS, Lee CM, Jeong YI, Jung ID, Kim BH, Seong EY, et al. D-pinitol regulates Th1/Th2 balance via suppressing Th2 immune response in ovalbumin-induced asthma. FEBS Lett. 2007;581(1):57–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Sethi G, Ahn KS, Sung B, Aggarwal BB. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther. 2008;7(6):1604–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Sivakumar S, Palsamy P, Subramanian SP. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact. 2010;188(1):237–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, et al. NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun. 2008;369(2):320–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nature Medicine. 2006;12(12):1403–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kindt E, Shum Y, Badura L, Snyder PJ, Brant A, Fountain S, et al. Development and validation of an LC/MS/MS procedure for the quantification of endogenous myo-inositol concentrations in rat brain tissue homogenates. Anal Chem. 2004;76(16):4901–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nature Medicine. 2009;15(9):1066–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Courtial N, Smink JJ, Kuvardina ON, Leutz A, Gothert JR, Lausen J. Tal1 regulates osteoclast differentiation through suppression of the master regulator of cell fusion DC-STAMP. FASEB J. 2012;26(2):523–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Smink JJ, Begay V, Schoenmaker T, Sterneck E, de Vries TJ, Leutz A. Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB. EMBO J. 2009;28(12):1769–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Pak Y, Hong Y, Kim S, Piccariello T, Farese RV, Larner J. In vivo chiro-inositol metabolism in the rat: a defect in chiro-inositol synthesis from myo-inositol and an increased incorporation of chiro-[3H]inositol into phospholipid in the Goto-Kakizaki (G.K) rat. Mol Cells. 1998;8(3):301–9.PubMedGoogle Scholar
  28. 28.
    Sun TH, Heimark DB, Nguygen T, Nadler JL, Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293(3):1092–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Choi MS, Lee WH, Kwon EY, Kang MA, Lee MK, Park YB, et al. Effects of soy pinitol on the pro-inflammatory cytokines and scavenger receptors in oxidized low-density lipoprotein-treated THP-1 macrophages. J Med Food. 2007;10(4):594–601.PubMedCrossRefGoogle Scholar
  30. 30.
    Do GM, Choi MS, Kim HJ, Woo MN, Lee MK, Jeon SM. Soy pinitol acts partly as an insulin sensitizer or insulin mediator in 3T3-L1 preadipocytes. Genes Nutr. 2008;2(4):359–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Ostlund Jr RE, Seemayer R, Gupta S, Kimmel R, Ostlund EL, Sherman WR. A stereospecific myo-inositol/D-chiro-inositol transporter in HepG2 liver cells. Identification with D-chiro-[3-3H]inositol. J Biol Chem. 1996;271(17):10073–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Yoshino K, Takeda N, Sugimoto M, Nakashima K, Okumura S, Hattori J, et al. Differential effects of troglitazone and D-chiroinositol on glucosamine-induced insulin resistance in vivo in rats. Metabolism. 1999;48(11):1418–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 1997;11(24):3482–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. 1997;3(11):1285–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Takatsuna H, Asagiri M, Kubota T, Oka K, Osada T, Sugiyama C, et al. Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, a novel NF-kappaB inhibitor, through downregulation of NFATc1. J Bone Miner Res. 2005;20(4):653–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Xing L, Bushnell TP, Carlson L, Tai Z, Tondravi M, Siebenlist U, et al. NF-kappaB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J Bone Miner Res. 2002;17(7):1200–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 2009;231(1):241–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005;202(9):1261–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee JS, Jung ID, Jeong YI, Lee CM, Shin YK, Lee SY, et al. D-pinitol inhibits Th1 polarization via the suppression of dendritic cells. Int Immunopharmacol. 2007;7(6):791–804.PubMedCrossRefGoogle Scholar
  40. 40.
    Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu SC, Chuang SM, Tang CH. d-pinitol inhibits RANKL-induced osteoclastogenesis. Int Immunopharmacol. 2012;12(3):494–500.PubMedCrossRefGoogle Scholar
  42. 42.
    Ang ES, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH, et al. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol. 2009;221(3):642–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jungeun Yu
    • 1
  • Seunga Choi
    • 1
  • Eui-Soon Park
    • 1
  • Bongjin Shin
    • 1
  • Jiyeon Yu
    • 1
  • Seoung Hoon Lee
    • 2
  • Masamichi Takami
    • 3
  • Jong Soon Kang
    • 4
  • Hyungun Meong
    • 5
  • Jaerang Rho
    • 1
    Email author
  1. 1.Department of Microbiology and Molecular BiologyChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Department of Oral Microbiology and ImmunologyWonkwang University School of DentistryIksanRepublic of Korea
  3. 3.Department of Biochemistry, School of DentistryShowa UniversityShinagawakuJapan
  4. 4.Korea Research Institute of Bioscience and BiotechnologyChungcheongbuk-doRepublic of Korea
  5. 5.Institute of Molecular GeneticsDaejeonRepublic of Korea

Personalised recommendations