Journal of Clinical Immunology

, Volume 32, Issue 5, pp 1118–1128

Requirements for Growth and IL-10 Expression of Highly Purified Human T Regulatory Cells

  • Benedetta Bonacci
  • Brandon Edwards
  • Shuang Jia
  • Calvin B. Williams
  • Martin J. Hessner
  • Stephen B. Gauld
  • James W. Verbsky


Human regulatory T cells (TR) cells have potential for the treatment of a variety of immune mediated diseases but the anergic phenotype of these cells makes them difficult to expand in vitro. We have examined the requirements for growth and cytokine expression from highly purified human TR cells, and correlated these findings with the signal transduction events of these cells. We demonstrate that these cells do not proliferate or secrete IL-10 even in the presence of high doses of IL-2. Stimulation with a superagonistic anti-CD28 antibody (clone 9.3) and IL-2 partially reversed the proliferative defect, and this correlated with reversal of the defective calcium mobilization in these cells. Dendritic cells were effective at promoting TR cell proliferation, and under these conditions the proliferative capacity of TR cells was comparable to conventional CD4 lymphocytes. Blocking TGF-β activity abrogated IL-10 expression from these cells, while addition of TGF-β resulted in IL-10 production. These data demonstrate that highly purified populations of TR cells are anergic even in the presence of high doses of IL-2. Furthermore, antigen presenting cells provide proper co-stimulation to overcome the anergic phenotype of TR cells, and under these conditions they are highly sensitive to IL-2. In addition, these data demonstrate for the first time that TGF-β is critical to enable human TR cells to express IL-10.


T regulatory cells human interleukin 2 transforming growth factor beta interleukin 10 


  1. 1.
    Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, Bowcock AM. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome [comment]. J Clin Invest. 2000;106:R75–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.PubMedCrossRefGoogle Scholar
  3. 3.
    Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Kobayashi I, Shiari R, Yamada M, Kawamura N, Okano M, Yara A, Iguchi A, Ishikawa N, Ariga T, Sakiyama Y, Ochs HD, Kobayashi K. Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). J Med Genet. 2001;38:874–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Verbsky JW. Therapeutic use of T regulatory cells. Curr Opin Rheumatol. 2007;19:252–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119:482–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Nakamura K, Kitani A, Strober W. Cell Contact-dependent Immunosuppression by CD4+CD25+ Regulatory T Cells Is Mediated by Cell Surface-bound Transforming Growth Factor {beta}. J Exp Med. 2001;194:629–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Paust S, Lu L, McCarty N, Cantor H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. PNAS. 2004;101:10398–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci U S A. 2003;100:10878–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21:589–601.PubMedCrossRefGoogle Scholar
  12. 12.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.PubMedCrossRefGoogle Scholar
  13. 13.
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.PubMedCrossRefGoogle Scholar
  14. 14.
    Bluestone JA. Regulatory T cells: therapeutic potential for treating transplant rejection and type I diabetes. J Vis Exp. 2007;257.Google Scholar
  15. 15.
    Elkord E. Novel therapeutic strategies by regulatory T cells in allergy. Chem Immunol Allergy. 2008;94:150–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev. 2008;223:371–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Verbsky JW. Therapeutic use of T regulatory cells. Curr Opin Rheumatol. 2007;19:252–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Randolph DA, Fathman CG. Cd4+Cd25+ regulatory T cells and their therapeutic potential. Annu Rev Med. 2006;57:381–402.PubMedCrossRefGoogle Scholar
  19. 19.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167:1245–53.PubMedGoogle Scholar
  20. 20.
    Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445:771–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Haribhai D, Lin W, Relland LM, Truong N, Williams CB, Chatila TA. Regulatory T cells dynamically control the primary immune response to foreign antigen. J Immunol. 2007;178:2961–72.PubMedGoogle Scholar
  24. 24.
    Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood. 2006;108:2655–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Haribhai D, Lin W, Edwards B, Ziegelbauer J, Salzman NH, Carlson MR, Li SH, Simpson PM, Chatila TA, Williams CB. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol. 2009;182:3461–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007;110:2983–90.PubMedCrossRefGoogle Scholar
  28. 28.
    Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:1061–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Elkord E, Williams PE, Kynaston H, Rowbottom AW. Human monocyte isolation methods influence cytokine production from in vitro generated dendritic cells. Immunology. 2005;114:204–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsuji-Takayama K, Suzuki M, Yamamoto M, Harashima A, Okochi A, Otani T, Inoue T, Sugimoto A, Toraya T, Takeuchi M, Yamasaki F, Nakamura S, Kibata M. The production of IL-10 by human regulatory T cells is enhanced by IL-2 through a STAT5-responsive intronic enhancer in the IL-10 locus. J Immunol. 2008;181:3897–905.PubMedGoogle Scholar
  31. 31.
    Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY, Weaver CT. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol. 2007;8:931–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Schartz NE, Chaput N, Taieb J, Bonnaventure P, Trebeden-Negre H, Terme M, Menard C, Lebbe C, Schimpl A, Ardouin P, Zitvogel L. IL-2 production by dendritic cells is not critical for the activation of cognate and innate effectors in draining lymph nodes. Eur J Immunol. 2005;35:2840–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Granucci F, Feau S, Angeli V, Trottein F, Ricciardi-Castagnoli P. Early IL-2 production by mouse dendritic cells is the result of microbial-induced priming. J Immunol. 2003;170:5075–81.PubMedGoogle Scholar
  35. 35.
    Granucci F, Andrews DM, Degli-Esposti MA, Ricciardi-Castagnoli P. IL-2 mediates adjuvant effect of dendritic cells. Trends Immunol. 2002;23:169–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, Rescigno M, Moro G, Ricciardi-Castagnoli P. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol. 2001;2:882–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Crellin NK, Garcia RV, Levings MK. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood. 2007;109:2014–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Hombach AA, Kofler D, Hombach A, Rappl G, Abken H. Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol. 2007;179:7924–31.PubMedGoogle Scholar
  39. 39.
    Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med. 2003;198:1179–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Benedetta Bonacci
    • 1
  • Brandon Edwards
    • 1
  • Shuang Jia
    • 1
    • 2
  • Calvin B. Williams
    • 1
    • 2
  • Martin J. Hessner
    • 1
    • 2
  • Stephen B. Gauld
    • 1
    • 2
  • James W. Verbsky
    • 1
    • 2
    • 3
  1. 1.Department of PediatricsMedical College of Wisconsin and the Children’s Research InstituteMilwaukeeUSA
  2. 2.Department of Microbiology and Medical GeneticsMedical College of Wisconsin and the Children’s Research InstituteMilwaukeeUSA
  3. 3.Pediatrics and Microbiology and Molecular GeneticsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations