Advertisement

Journal of Clinical Immunology

, Volume 32, Issue 3, pp 540–550 | Cite as

Up Regulated Complement and Fc Receptors in Juvenile Idiopathic Arthritis and Correlation with Disease Phenotype

  • Kajsa E. Prokopec
  • Lillemor Berntson
  • Anders Öman
  • Sandra KleinauEmail author
Article

Abstract

Purpose

The progress in identifying immunological mechanisms in juvenile idiopathic arthritis (JIA) has partly been hampered by the fact that the disease is heterogeneous. Here we have investigated complement and Fc receptors, as part of the inflammatory process, in two subgroups of JIA.

Methods

Blood from 26 patients with oligoarticular or polyarticular course type JIA and 21 healthy age and sex-matched controls were investigated by FACS and immunoassays.

Results

Increased numbers of monocytes and augmented plasma levels of C-reactive protein, C3a and IgG were found in both JIA subgroups. However, only polyarticular patients exhibited increased expression of Fc gamma receptor (FcγR) II and III and complement receptor (CR) 1 on monocytes along with enhanced CR1 expression on B cells. A correlation was observed between degree of receptor expression and C3a levels in the patients.

Conclusions

Complement and Fc receptors are up regulated in children with multiple joint involvements, thus highlighting these pathways in the pathogenesis of polyarticular JIA.

Keywords

Juvenile idiopathic arthritis Fc receptors complement monocytes B cells 

Notes

Acknowledgements

For technical assistance we thank Sofia Magnusson. This research project was supported by The King Gustav V’s 80 years Foundation and The Sigurd and Elsa Golje Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–2.PubMedGoogle Scholar
  2. 2.
    Berntson L, Andersson Gare B, Fasth A, Herlin T, Kristinsson J, Lahdenne P, et al. Incidence of juvenile idiopathic arthritis in the Nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol. 2003;30(10):2275–82.PubMedGoogle Scholar
  3. 3.
    Habib HM, Mosaad YM, Youssef HM. Anti-cyclic citrullinated peptide antibodies in patients with juvenile idiopathic arthritis. Immunol Invest. 2008;37(8):849–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Modesto C, Anton J, Rodriguez B, Bou R, Arnal C, Ros J, et al. Incidence and prevalence of juvenile idiopathic arthritis in Catalonia (Spain). Scand J Rheumatol. 39(6):472–9.Google Scholar
  5. 5.
    Pruunsild C, Uibo K, Liivamagi H, Tarraste S, Talvik T, Pelkonen P. Incidence of juvenile idiopathic arthritis in children in Estonia: a prospective population-based study. Scand J Rheumatol. 2007;36(1):7–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Low JM, Chauhan AK, Kietz DA, Daud U, Pepmueller PH, Moore TL. Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with juvenile idiopathic arthritis. J Rheumatol. 2004;31(9):1829–33.PubMedGoogle Scholar
  7. 7.
    Dewint P, Hoffman IE, Rogge S, Joos R, Union A, Dehoorne J, et al. Effect of age on prevalence of anticitrullinated protein/peptide antibodies in polyarticular juvenile idiopathic arthritis. Rheumatology (Oxford). 2006;45(2):204–8.CrossRefGoogle Scholar
  8. 8.
    Tsokos GC, Inghirami G, Pillemer SR, Mavridis A, Magilavy DB. Immunoregulatory aberrations in patients with polyarticular juvenile rheumatoid arthritis. Clin Immunol Immunopathol. 1988;47(1):62–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Moore TL, Weiss TD. Immunologic studies in juvenile arthritis. Bull Rheum Dis. 1982;32(3):25–9.PubMedGoogle Scholar
  10. 10.
    Low JM, Chauhan AK, Moore TL. Abnormal kappa:lambda light chain ratio in circulating immune complexes as a marker for B cell activity in juvenile idiopathic arthritis. Scand J Immunol. 2007;65(1):76–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Kleinau S, Martinsson P, Heyman B. Induction and suppression of collagen-induced arthritis is dependent on distinct fcgamma receptors. J Exp Med. 2000;191(9):1611–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Kleinau S. The impact of Fc receptors on the development of autoimmune diseases. Curr Pharm Des. 2003;9(23):1861–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Torsteinsdottir I, Arvidson NG, Hallgren R, Hakansson L. Monocyte activation in rheumatoid arthritis (RA): increased integrin, Fc gamma and complement receptor expression and the effect of glucocorticoids. Clin Exp Immunol. 1999;115(3):554–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Hepburn AL, Mason JC, Davies KA. Expression of Fcgamma and complement receptors on peripheral blood monocytes in systemic lupus erythematosus and rheumatoid arthritis. Rheumatology (Oxford). 2004;43(5):547–54.CrossRefGoogle Scholar
  15. 15.
    Magnusson SE, Engstrom M, Jacob U, Ulfgren AK, Kleinau S. High synovial expression of the inhibitory FcgammaRIIb in rheumatoid arthritis. Arthritis Res Ther. 2007;9(3):R51.PubMedCrossRefGoogle Scholar
  16. 16.
    Prokopec KE, Rhodiner M, Matt P, Lindqvist U, Kleinau S. Down regulation of Fc and complement receptors on B cells in rheumatoid arthritis. Clin Immunol. 137(3):322–9.Google Scholar
  17. 17.
    Miller 3rd JJ, Olds LC, Huene DB. Complement activation products and factors influencing phagocyte migration in synovial fluids from children with chronic arthritis. Clin Exp Rheumatol. 1986;4(1):53–6.PubMedGoogle Scholar
  18. 18.
    Mollnes TE, Paus A. Complement activation in synovial fluid and tissue from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1986;29(11):1359–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Aggarwal A, Bhardwaj A, Alam S, Misra R. Evidence for activation of the alternate complement pathway in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford). 2000;39(2):189–92.CrossRefGoogle Scholar
  20. 20.
    Khera R, Das N. Complement receptor 1: disease associations and therapeutic implications. Mol Immunol. 2009;46(5):761–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Carter RH, Fearon DT. Polymeric C3dg primes human B lymphocytes for proliferation induced by anti-IgM. J Immunol. 1989;143(6):1755–60.PubMedGoogle Scholar
  22. 22.
    Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271(5247):348–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med. 1999;190(4):585–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature. 2008;456(7224):989–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Griffin TA, Barnes MG, Ilowite NT, Olson JC, Sherry DD, Gottlieb BS, et al. Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. Arthritis Rheum. 2009;60(7):2113–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Ehlenberger AG, Nussenzweig V. The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med. 1977;145(2):357–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Liu D, Niu ZX. The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol. 2009;31(4):524–35.PubMedCrossRefGoogle Scholar
  28. 28.
    McCarthy D, Taylor MJ, Bernhagen J, Perry JD, Hamblin AS. Leucocyte integrin and CR1 expression on peripheral blood leucocytes of patients with rheumatoid arthritis. Ann Rheum Dis. 1992;51(3):307–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Barnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(7):2102–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Isaak A, Gergely Jr P, Szekeres Z, Prechl J, Poor G, Erdei A, et al. Physiological up-regulation of inhibitory receptors Fc gamma RII and CR1 on memory B cells is lacking in SLE patients. Int Immunol. 2008;20(2):185–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin U, Bock D, Arseniev L, Tornetta MA, Ames RS, Bautsch W, et al. The human C3a receptor is expressed on neutrophils and monocytes, but not on B or T lymphocytes. J Exp Med. 1997;186(2):199–207.PubMedCrossRefGoogle Scholar
  32. 32.
    Funkhouser TA, Vik DP. Complement receptor type 1 gene regulation: retinoic acid and cytosine arabinoside increase CR1 expression. Scand J Immunol. 1999;49(1):21–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Honczarenko M, Ratajczak MZ, Nicholson-Weller A, Silberstein LE. Complement C3a enhances CXCL12 (SDF-1)-mediated chemotaxis of bone marrow hematopoietic cells independently of C3a receptor. J Immunol. 2005;175(6):3698–706.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kajsa E. Prokopec
    • 1
    • 3
  • Lillemor Berntson
    • 2
  • Anders Öman
    • 2
  • Sandra Kleinau
    • 1
    Email author
  1. 1.Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
  2. 2.Department of Women’s and Children’s HealthUppsala UniversityUppsalaSweden
  3. 3.Department of MedicineKarolinska InstituteStockholmSweden

Personalised recommendations