Journal of Clinical Immunology

, Volume 32, Issue 3, pp 611–621 | Cite as

The Role of Innate Cells Is Coupled to a Th1-Polarized Immune Response in Pediatric Nonalcoholic Steatohepatitis

  • Nazarena E. Ferreyra Solari
  • María Eugenia Inzaugarat
  • Placida Baz
  • Elena De Matteo
  • Carol Lezama
  • Marcela Galoppo
  • Cristina Galoppo
  • Alejandra C. Cherñavsky



Nonalcoholic steatohepatitis (NASH) is a chronic inflammatory liver disease influenced by risk factors for the metabolic syndrome. In adult patients, NASH is associated with an altered phenotype and functionality of peripheral immune cells, the recruitment of leukocytes and intrahepatic activation, and an exacerbated production of reactive oxygen species (ROS) and cytokines. It remains unclear if the previously described differences between pediatric and adult nonalcoholic fatty liver diseases also reflect differences in their pathogenesis.


We aimed to investigate the phenotype and functionality of circulating immune cells and the potential contribution of liver infiltrating leukocytes to the immunological imbalance in pediatric NASH.


By a real-time PCR-based analysis of cytokines and immunohistochemical staining of liver biopsies, we demonstrated that the hepatic microenvironment is dominated by interferon-gamma (IFN-γ) but not interleukin-4 and is infiltrated by a higher number of CD8+ cells in pediatric NASH. The number of infiltrating neutrophils positively correlated with ROS generation by peripheral polymorphonuclear cells. By a flow cytometric analysis of peripheral blood lymphocytes, a distinctive increase in CD8+ CD45RO and CD8+ CD45RA subpopulations and an increased production of IFN-γ by CD4+ and CD8+ cells were shown. The production of ROS following PMA stimulation was augmented in circulating neutrophils but not in monocytes.


In sum, the distinctive phenotype and functionality of infiltrating and circulating cells suggest that the role of innate cells is coupled to a Th1-polarized immune response in pediatric NASH.


Memory and naive T cell subsets polymorphonuclear cells oxidative stress Th1/Th2 cytokines pediatric NASH 


  1. 1.
    Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009;13:9–19.PubMedGoogle Scholar
  2. 2.
    Vuppalanchi R, Chalasani N. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: past, present and future directions. J Gastrointestin Liver Dis. 2010;19:415–23.Google Scholar
  3. 3.
    Brunt EM. Pathology of nonalcoholic steatohepatitis. Hepatol Res. 2005;33:68–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Brunt EM. Histopathology of non-alcoholic fatty liver disease. Clin Liver Dis. 2005;13:533–44.CrossRefGoogle Scholar
  5. 5.
    Day C, James OFW. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Basaranoglu M, Kayacetin S, Yilmaz N, Kayacetin E, Tarcin O, Sonsuz A. Understanding mechanisms of the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2010;16:2223–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Fassio E, Alvarez E, Dominguez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40:820–6.PubMedGoogle Scholar
  8. 8.
    Jasen PML. Nonalcoholic steatohepatitis. J Med. 2004;62:217–24.Google Scholar
  9. 9.
    Pascale A, Pais R, Ratziu V. An overview of nonalcoholic steatohepatitis: past, present and future directions. J Gastrointestin Liver Dis. 2010;19:415–23.PubMedGoogle Scholar
  10. 10.
    Tominaga K, Fujimoto E, Suzuki K, Hayashi M, Ichikawa M, Inaba Y. Prevalence of non-alcoholic fatty liver disease in children and relationship to metabolic syndrome, insulin resistance, and waist circumference. Environ Health Prev Med. 2009;14:142–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13:511–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Frith J, Jones D, Newton J. Chronic liver disease in an ageing population. Age Ageing. 2009;38:11–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Singh R, Bullard J, Kalra M, Assefa S, Kaul AK, Vonfeldt K, et al. Status of bacterial colonization, Toll like receptor expression and nuclear factor-kappa B activation in normal and diseased human livers. Clin Immunol. 2011;138:41–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Jaeschke H, Gores GJ, Cederbaum AI, Hinson JÁ, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci. 2002;65:166–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Buffy G. Kupffer cells in non-alcoholic steatohepatitis: the emerging view. J Hepatol. 2009;51:212–23.CrossRefGoogle Scholar
  16. 16.
    Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdelmalek MF, Diehl AM. Mechanisms underlying nonalcoholic steatohepatitis. Drug Discov Today: Dis Mech. 2006;3:479–88.CrossRefGoogle Scholar
  18. 18.
    Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, Lavine JE. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42:641–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rensen SS, Slaats S, Nijhuis J, Jans A, Bieghs V, Driessen A, Malle E, Greve JW, Buurman WA. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol. 2009;175:1473–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Adler M, Taylor S, Okebugwu K, Yee H, Fielding C, Fielding G, Poles M. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J Gastroenterol. 2011;17:1725–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Li QF, Li YP, Cheng PS. Peripheral T-lymphocyte subsets changes in patients with endocrine and metabolic diseases. Zhonghua Nei Ke Za Zhi. 1989;28:410–2.PubMedGoogle Scholar
  22. 22.
    Romo EM, Muñoz-Robles JA, Castillo-Rama M, Meneu JC, Moreno-Elola A, Perez-Saborido B, et al. Peripheral blood lymphocyte populations in end-stage liver diseases. J Clin Gastroenterol. 2007;41(7):713–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Inzaugarat ME, Ferreyra Solari NE, Billordo LA, Abecasis R, Gadano AC, Cherñavsky AC. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol. 2011;31:1120–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1–6.CrossRefGoogle Scholar
  27. 27.
    De Basio MB, Periolo N, Avagnina A, Garcia de Davila MT, Ciocca M, Goñi J, de Mateeo E, Galoppo C, Cañero-Velasco MC, Fainboim H, Muñoz AE, Fainboim L, Cherñavsky AC. Liver infiltrating mononuclear cells in children with type 1 autoimmune hepatitis. J Clin Pathol. 2006;59:417–23.CrossRefGoogle Scholar
  28. 28.
    Lalor PL, Shields P, et al. Recruitment of lymphocytes to the human liver. Immunol Cell Biol. 2002;80:52–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Lemmers A, Moreno C, Gustot T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49:646–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Berard M, Tough DF. Qualitative differences between naïve and memory T cells. Immunology. 2002;106:127–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Linton JP, Haynes L, Tsui L, Zhang X, Swain S. From naive to effector—alterations with aging. Immunol Rev. 1997;160:9–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A, Thiel A. Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med. 2002;195:789–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Richards SJ, Jones RA, Roberts BE, Patel D, Scott CS. Relationships between 2H4 (CD45RA) and UCHLl (CD45RO) expression by normal blood CD4+ CD8, CD4 CD8+, CD4 CD8dim+, CD3+ CD4CD8 and CD3 CD4CD8 lymphocytes. Clin Exp Immunol. 1990;81:149–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Socha P, Michalkiewicz J, Stachowski J, Pawlowska J, Jankowska I, Barth C, Socha J, Madalinski K. Deficiency of the expression of CD45RA isoform of CD45 common leukocyte antigen in CD4+ T lymphocytes in children with infantile cholestasis. Immunol Let. 2001;78:179–84.CrossRefGoogle Scholar
  35. 35.
    Summers KL, O’Donnell JL, Hart DNJ. Co-expression of the CD45RA and CD45RO antigens on T lymphocytes in chronic arthritis. Clin Exp Immunol. 1994;97:39–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Hu X, Gu Y, Wang Y, Cong Y, Qu X, Xu C. Increased CD4+ and CD8+ effector memory T cells in patients with aplastic anemia. Annu Rev Immunol. 2004;22:745–63.CrossRefGoogle Scholar
  37. 37.
    Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Saluusto F. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol. 2003;4:78–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Weng HL, Cai WM, Liu RH. Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol. 2001;7:42–8.PubMedGoogle Scholar
  39. 39.
    Knight B, Lim R, Yeoh GC, Olynyk JK. Interferon-γ exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol. 2007;47:826–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Videm V, Strand E. Changes in neutrophil surface-receptor expression after stimulation with FMLP endotoxin, interleukin-8 and activated complement compared to degranulation. Scand J Immunol. 2004;59:25–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol. 2004;172:1809–14.PubMedGoogle Scholar
  42. 42.
    Fitzpatrick E, Mitry RR, Quaglia A, Hussain MJ, DeBruyne R, Dhawan A. Serum levels of CK18 M30 and leptin are useful predictors of steatohepatitis and fibrosis in paediatric NAFLD. J Pediatr Gastroenterol Nutr. 2010;51:500–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Santos-Alvarez J, Goberna R, Sanchez-Margalet V. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol. 1999;194:6–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nazarena E. Ferreyra Solari
    • 1
  • María Eugenia Inzaugarat
    • 1
  • Placida Baz
    • 1
  • Elena De Matteo
    • 2
  • Carol Lezama
    • 3
  • Marcela Galoppo
    • 3
  • Cristina Galoppo
    • 3
  • Alejandra C. Cherñavsky
    • 1
  1. 1.Laboratorio de InmunogenéticaHospital de Clínicas “José de San Martín”, Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Servicio de PatologíaHospital de Niños “Dr. R. Gutierrez”, Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Unidad de HepatologíaHospital de Niños “Dr. Ricardo Gutiérrez”, Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations