Journal of Clinical Immunology

, Volume 32, Issue 2, pp 238–245 | Cite as

Determination of Human Anticytokine Autoantibody Profiles Using a Particle-Based Approach

  • Li Ding
  • Allen Mo
  • Kamonwan Jutivorakool
  • Minjal Pancholi
  • Steven M. Holland
  • Sarah K. Browne
Article

Abstract

Background

Anticytokine autoantibodies cause numerous human diseases, ranging from pure red cell aplasia to acquired immunodeficiencies. Rapid, simple, and affordable detection and monitoring of these antibodies is essential. We sought to develop a standardizable assay that is rapid, sensitive, and specific and able to simultaneously detect multiple anticytokine autoantibodies in small volumes (<10 μl).

Methods

We conjugated purified human cytokines to commercially available fluorescently labeled microspheres and tested them against sera from well-characterized subjects with at least one high-titer, disease-associated anticytokine autoantibody.

Results

Cytokine-conjugated microspheres efficiently and rapidly determined plasma concentration and IgG subclass of anticytokine autoantibodies in single or multiplex formats.

Conclusion

This particle-based multiplex assay can reproducibly characterize anticytokine autoantibodies. This efficient and inexpensive approach to diagnosing and monitoring anticytokine autoantibodies has clinical applications.

Keywords

Interferon gamma luminex thymoma pulmonary alveolar proteinosis immunodeficiency 

Notes

Acknowledgments

This work was supported by the Division of Intramural Research at the National Institute of Allergy and Infectious Diseases and Colgate University.

References

  1. 1.
    Browne SK, Holland SM. Immunodeficiency secondary to anticytokine autoantibodies. Curr Opin Allergy Clin Immunol. 2010;10(6):534–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Riches PL, McRorie E, Fraser WD, Determann C, van’t Hof R, Ralston SH. Osteoporosis associated with neutralizing autoantibodies against osteoprotegerin. N Engl J Med. 2009;361(15):1459–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Borie R, Debray MP, Laine C, Aubier M, Crestani B. Rituximab therapy in autoimmune pulmonary alveolar proteinosis. Eur Respir J. 2009;33(6):1503–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Kavuru MS, Malur A, Marshall I, Barna BP, Meziane M, Huizar I, et al. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur Respir J. 2011. doi:10.1183/09031936.00197710.
  5. 5.
    Behler CM, Terrault NA, Etzell JE, Damon LE. Rituximab therapy for pure red cell aplasia due to anti-epoetin antibodies in a woman treated with epoetin-alfa: a case report. J Med Case Reports. 2009;3:7335.PubMedCrossRefGoogle Scholar
  6. 6.
    Macdougall IC, Rossert J, Casadevall N, Stead RB, Duliege AM, Froissart M, et al. A peptide-based erythropoietin-receptor agonist for pure red-cell aplasia. N Engl J Med. 2009;361(19):1848–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet. 2010;42(8):698–702.PubMedCrossRefGoogle Scholar
  8. 8.
    Fuja T, Hou S, Bryant P. A multiplex microsphere bead assay for comparative RNA expression analysis using flow cytometry. J Biotechnol. 2004;108(3):193–205.PubMedCrossRefGoogle Scholar
  9. 9.
    Zheng Z, Luo Y, McMaster GK. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood. Clin Chem. 2006;52(7):1294–302.PubMedCrossRefGoogle Scholar
  10. 10.
    Bonfield TL, John N, Barna BP, Kavuru MS, Thomassen MJ, Yen-Lieberman B. Multiplexed particle-based anti-granulocyte macrophage colony stimulating factor assay used as pulmonary diagnostic test. Clin Diagn Lab Immunol. 2005;12(7):821–4.PubMedGoogle Scholar
  11. 11.
    Burbelo PD, Browne SK, Sampaio EP, Giaccone G, Zaman R, Kristosturyan E, et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood. 2010;116(23):4848–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Patel SY, Ding L, Brown MR, Lantz L, Gay T, Cohen S, et al. Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. J Immunol. 2005;175(7):4769–76.PubMedGoogle Scholar
  13. 13.
    Wood BA, O’Halloran KP, Vandewoude S. Development and validation of a multiplex microsphere-based assay for detection of domestic cat (Felis catus) cytokines. Clin Vaccine Immunol. 2011;18(3):387–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Sun M, Manolopoulou J, Spyroglou A, Beuschlein F, Hantel C, Wu Z, et al. A microsphere-based duplex competitive immunoassay for the simultaneous measurements of aldosterone and testosterone in small sample volumes: validation in human and mouse plasma. Steroids. 2010;75(13–14):1089–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Lindberg C, Bokarewa M. Rituximab for severe myasthenia gravis—experience from five patients. Acta Neurol Scand. 2010;122(4):225–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Bhol K, Mohimen A, Ahmed AR. Correlation of subclasses of IgG with disease activity in pemphigus vulgaris. Dermatology. 1994;189 Suppl 1:85–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Bhol K, Natarajan K, Nagarwalla N, Mohimen A, Aoki V, Ahmed AR. Correlation of peptide specificity and IgG subclass with pathogenic and nonpathogenic autoantibodies in pemphigus vulgaris: a model for autoimmunity. Proc Natl Acad Sci USA. 1995;92(11):5239–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Li Ding
    • 1
  • Allen Mo
    • 1
    • 2
  • Kamonwan Jutivorakool
    • 1
  • Minjal Pancholi
    • 1
  • Steven M. Holland
    • 1
  • Sarah K. Browne
    • 1
  1. 1.Laboratory of Clinical Infectious DiseasesNational Institutes of Allergy and Infectious DiseasesBethesdaUSA
  2. 2.Colgate UniversityHamiltonUSA

Personalised recommendations