Journal of Clinical Immunology

, Volume 31, Issue 6, pp 1045–1053

Developmental, Malignancy-Related, and Cross-Species Analysis of Eosinophil, Mast Cell, and Basophil Siglec-8 Expression

  • Sherry A. Hudson
  • Harald Herrmann
  • Jian Du
  • Paul Cox
  • El-Bdaoui Haddad
  • Barbara Butler
  • Paul R. Crocker
  • Steven J. Ackerman
  • Peter Valent
  • Bruce S. Bochner
Article

Abstract

Objective

The aim of this study is to determine when during hematopoiesis Siglec-8 gets expressed, whether it is expressed on hematologic malignancies, and if there are other non-human species that express Siglec-8.

Methods

Siglec-8 mRNA and cell surface expression was monitored during in vitro maturation of human eosinophils and mast cells. Flow cytometry was performed on human blood and bone marrow samples, and on blood samples from dogs, baboons, and rhesus and cynomolgus monkeys.

Results

Siglec-8 is a late maturation marker. It is detectable on eosinophils and basophils from subjects with chronic eosinophilic leukemia, chronic myelogenous leukemia, and on malignant and non-malignant bone marrow mast cells, as well as the HMC-1.2 cell line. None of the Siglec-8 monoclonal antibodies tested recognized leukocytes from dogs, baboons, and rhesus and cynomolgus monkeys.

Conclusions

Siglec-8-based therapies should not target immature human leukocytes but should recognize mature and malignant eosinophils, mast cells, and basophils. So far, there is no suitable species for preclinical testing of Siglec-8 monoclonal antibodies.

Keywords

Siglec-8 eosinophils mast cells basophils expression hematologic malignancies cell lines 

References

  1. 1.
    Floyd H, Ni J, Cornish AL, Zeng Z, Liu D, Carter KC, et al. Siglec-8: a novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem. 2000;275:861–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Kikly KK, Bochner BS, Freeman S, Tan KB, Gallagher KT, D'Alessio K, et al. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells and basophils. J Allergy Clin Immunol. 2000;105:1093–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy. 2009;39:317–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Hudson SA, Bovin N, Schnaar RL, Crocker PR, Bochner BS. Eosinophil-selective binding and pro-apoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6'-sulfated sialyl Lewis X. J Pharmacol Exp Ther. 2009;330:608–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun. 2005;336:918–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters Siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol. 2008;38:121–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Yokoi H, Choi OH, Hubbard W, Lee H-S, Canning BJ, Lee HH, et al. Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by Siglec-8 engagement. J Allergy Clin Immunol. 2008;121:499–505.PubMedCrossRefGoogle Scholar
  9. 9.
    Tateno H, Crocker PR, Paulson JC. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology. 2005;15:1125–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Varki A, Angata T. Siglecs—the major sub-family of I-type lectins. Glycobiology. 2006;16:1R–27R.PubMedCrossRefGoogle Scholar
  11. 11.
    Cho JY, Song DJ, Pham A, Rosenthal P, Miller M, Dayan S, et al. Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13. Respir Res. 2010;11:154.PubMedCrossRefGoogle Scholar
  12. 12.
    Song DJ, Cho JY, Miller M, Strangman W, Zhang M, Varki A, et al. Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol. 2009;131:157–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Song DJ, Cho JY, Lee SY, Miller M, Rosenthal P, Soroosh P, et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol. 2009;183:5333–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C, Cromie KD, et al. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy. 2008;63:1156–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Yokoi H, Myers A, Matsumoto K, Crocker PR, Saito H, Bochner BS. Alteration and acquisition of Siglecs during in vitro maturation of CD34+ progenitors into human mast cells. Allergy. 2006;61:769–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Dyer KD, Moser JM, Czapiga M, Siegel SJ, Percopo CM, Rosenberg HF. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol. 2008;181:4004–9.PubMedGoogle Scholar
  17. 17.
    Lilliehook I, Johannisson A, Hakansson L. Expression of adhesion and Fcγ-receptors on canine blood eosinophils and neutrophils studied by anti-human monoclonal antibodies. Vet Immunol Immunopathol. 1998;61:181–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ. Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood. 2009;113:317–27.PubMedCrossRefGoogle Scholar
  19. 19.
    Mirkina I, Schweighoffer T, Kricek F. Inhibition of human cord blood-derived mast cell responses by anti-FcεRI mAb 15/1 versus anti-IgE omalizumab. Immunol Lett. 2007;109:120–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Aichberger KJ, Gleixner KV, Mirkina I, Cerny-Reiterer S, Peter B, Ferenc V, et al. Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs. Blood. 2009;114:5342–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Baumann MA, Paul CC. The AML14 and AML14.3D10 cell lines: a long-overdue model for the study of eosinophils and more. Stem Cells. 1998;16:16–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom-Himes JA, et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem. 2002;277:43481–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Du J, Alsayed YM, Xin F, Ackerman SJ, Platanias LC. Engagement of the CrkL adapter in interleukin-5 signaling in eosinophils. J Biol Chem. 2000;275:33167–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Vardiman J, Melo J, Baccarani M, Thiele J. Chronic myelogenous leukemia, BCR/ABL1 positive. In: Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, et al., editors. World Health Organization (WHO) classification of tumours pathology & genetics tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008. p. 32–7.Google Scholar
  25. 25.
    Ellis AK, Ackerman SJ, Crawford L, Du J, Bedi R, Denburg JA. Cord blood molecular biomarkers of eosinophilopoiesis: kinetic analysis of GATA-1, MBP1 and IL-5R alpha mRNA expression. Pediatr Allergy Immunol. 2010;21:640–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Mayerhofer M, Gleixner KV, Hoelbl A, Florian S, Hoermann G, Aichberger KJ, et al. Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J Immunol. 2008;180:5466–76.PubMedGoogle Scholar
  27. 27.
    Angata T, Hingorani R, Varki NM, Varki A. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem. 2001;276:45128–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Angata T, Margulies EH, Green ED, Varki A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA. 2004;101:13251–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Cao H, de Bono B, Belov K, Wong ES, Trowsdale J, Barrow AD. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics. 2009;61:401–17.PubMedCrossRefGoogle Scholar
  30. 30.
    O'Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009;30:240–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, Paulson JC. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood. 2010;115:4778–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Kardava L, Moir S, Wang W, Ho J, Buckner CM, Posada JG, et al. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors. J Clin Invest. 2011;121:2614–24.PubMedCrossRefGoogle Scholar
  33. 33.
    von Gunten S, Bochner BS. Expression and function of Siglec-8 in human eosinophils, basophils and mast cells. In: Pawankar R, Holgate S, Rosenwasser LJ, editors. Allergy frontiers: classification and pathomechanisms. Tokyo: Springer; 2009. p. 297–313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sherry A. Hudson
    • 1
  • Harald Herrmann
    • 2
  • Jian Du
    • 3
  • Paul Cox
    • 4
  • El-Bdaoui Haddad
    • 4
  • Barbara Butler
    • 4
  • Paul R. Crocker
    • 5
  • Steven J. Ackerman
    • 3
  • Peter Valent
    • 2
  • Bruce S. Bochner
    • 1
    • 6
  1. 1.Department of Medicine, Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
  3. 3.Departments of Biochemistry and Molecular Genetics, and Medicine—Section of Hematology Oncology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Sanofi-Aventis US, LLCBridgewaterUSA
  5. 5.Division of Cell Biology and Immunology, Wellcome Trust Biocentre, College of Life SciencesUniversity of DundeeDundeeUK
  6. 6.Division of Allergy and Clinical ImmunologyJohns Hopkins Asthma and Allergy CenterBaltimoreUSA

Personalised recommendations