Journal of Clinical Immunology

, Volume 30, Supplement 1, pp 4–8 | Cite as

Immunomodulation by Intravenous Immunoglobulin: Role of Regulatory T Cells

  • Mohan S. Maddur
  • Shivashankar Othy
  • Pushpa Hegde
  • Janakiraman Vani
  • Sébastien Lacroix-Desmazes
  • Jagadeesh Bayry
  • Srini V. Kaveri
Article

Abstract

An altered immune homeostasis as a result of deficiency or defective function of CD4+CD25+FoxP3+ regulatory T cells (Tregs) is common in several autoimmune diseases. Hence, therapeutic strategies to render Tregs functionally competent are being investigated. Intravenous immunoglobulin (IVIG) is being increasingly used for the treatment of a wide range of autoimmune and inflammatory diseases. Recent studies have demonstrated that IVIG induces the expansion of Tregs and enhances their suppressive functions. These effects of IVIG on Tregs correlate with the beneficial effects of IVIG in patients with autoimmune diseases. Thus, modulation of Tregs by IVIG represents a novel mode of action that explains the therapeutic effects of IVIG in T cell-mediated autoimmune diseases. However, the molecular mechanisms involved in IVIG-mediated modulation of Tregs are unclear and need further investigation.

Keywords

IVIG intravenous immunoglobulin regulatory T cells autoimmune diseases inflammation immunomodulation 

References

  1. 1.
    Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345:747–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Gold R, Stangel M, Dalakas MC. Drug insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues. Nat Clin Pract Neurol. 2007;3:36–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat Clin Pract Rheumatol. 2007;3:262–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29:608–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Andre S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol. 2009;174:1575–87.CrossRefPubMedGoogle Scholar
  12. 12.
    Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA. 2008;105:10113–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206:421–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Bayry J. Autoimmunity: CTLA-4: a key protein in autoimmunity. Nat Rev Rheumatol. 2009;5:244–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood. 2008;111:715–22.CrossRefPubMedGoogle Scholar
  18. 18.
    De Groot AS, Moise L, McMurry JA, Wambre E, Van Overtvelt L, Moingeon P, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112:3303–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Furuno K, Yuge T, Kusuhara K, Takada H, Nishio H, Khajoee V, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr. 2004;145:385–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Chi LJ, Wang HB, Zhang Y, Wang WZ. Abnormality of circulating CD4(+)CD25(+) regulatory T cell in patients with Guillain-Barre syndrome. J Neuroimmunol. 2007;192:206–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Barreto M, Ferreira RC, Lourenço L, Moraes-Fontes MF, Santos E, Alves M, et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol. 2009;10:5.CrossRefPubMedGoogle Scholar
  22. 22.
    Kessel A, Ammuri H, Peri R, Pavlotzky ER, Blank M, Shoenfeld Y, et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J Immunol. 2007;179:5571–5.PubMedGoogle Scholar
  23. 23.
    Bayry J, Siberil S, Triebel F, Tough DF, Kaveri SV. Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov Today. 2007;12:548–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Caspi RR. Tregitopes switch on Tregs. Blood. 2008;112:3003–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mohan S. Maddur
    • 1
    • 2
    • 3
  • Shivashankar Othy
    • 1
    • 2
    • 3
  • Pushpa Hegde
    • 1
    • 2
    • 3
  • Janakiraman Vani
    • 1
    • 2
    • 3
  • Sébastien Lacroix-Desmazes
    • 1
    • 2
    • 3
  • Jagadeesh Bayry
    • 1
    • 2
    • 3
  • Srini V. Kaveri
    • 1
    • 2
    • 3
  1. 1.Unité 872Institut National de la Santé et de la Recherche Médicale ParisParisFrance
  2. 2.Centre de Recherche des Cordeliers, Equipe 16-Immunopathology and Therapeutic ImmunointerventionUniversité Pierre et Marie Curie-Paris 6ParisFrance
  3. 3.Université Paris DescartesParisFrance

Personalised recommendations