Journal of Clinical Immunology

, Volume 30, Issue 4, pp 502–506 | Cite as

Innate Immune Detection of Bacterial Virulence Factors Via the NLRC4 Inflammasome




Cytokine production by innate immune cells is initiated by signaling downstream of pattern recognition receptors, including Toll-like receptors.


A subset of cytokines, including IL-1β and IL-18, require post-translational proteolysis before secretion, which provides a second mechanism of regulation. This proteolysis is dependent upon caspase 1, which is activated by Nod-like receptor (NLR) signaling. NLRC4 (previously named Ipaf) activates caspase 1 in response to bacterial virulence factors including type III and IV secretion systems (T3SS and T4SS). NLRC4 recognizes T3SS/T4SS in two ways: indirectly by detecting flagellin, and directly by detecting the T3SS rod protein. Both flagellin and rod protein are unintentionally delivered to the mammalian cytosol by the bacterium through the T3SS.


NLRC4 caspase 1 IL-1β type III secretion inflammation 


  1. 1.
    Ibarra JA, Steele-Mortimer O. Salmonella—the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009;11:1579–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Spears KJ, Roe AJ, Gally DL. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett. 2006;255:187–202.CrossRefPubMedGoogle Scholar
  3. 3.
    Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62:379–433.PubMedGoogle Scholar
  4. 4.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Miao EA, Andersen-Nissen E, Warren SE, Aderem A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol. 2007;29:275–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107:3076–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Miao EA, Ernst RK, Dors M, Mao DP, Aderem A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A. 2008;105:2562–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med. 2007;204:3235–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol. 2007;37:3030–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Macnab RM. Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta. 2004;1694:207–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Sun YH, Rolan HG, Tsolis RM. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem. 2007;282:33897–901.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee SH, Galan JE. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol. 2004;51:483–95.CrossRefPubMedGoogle Scholar
  13. 13.
    Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A. Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol. 2008;180:7558–64.PubMedGoogle Scholar
  14. 14.
    Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 2007;3:e111.CrossRefPubMedGoogle Scholar
  15. 15.
    Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7:569–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galan JE, Unger VM. Structural insights into the assembly of the type III secretion needle complex. Science. 2004;306:1040–2.CrossRefPubMedGoogle Scholar
  17. 17.
    Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 2003;424:643–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Sukhan A, Kubori T, Galan JE. Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J Bacteriol. 2003;185:3480–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Kimbrough TG, Miller SI. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A. 2000;97:11008–13.CrossRefPubMedGoogle Scholar
  20. 20.
    Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med. 2006;203:1407–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Raupach B, Peuschel SK, Monack DM, Zychlinsky A. Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun. 2006;74:4922–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Systems BiologySeattleUSA
  2. 2.Department of ImmunologyUniversity of WashingtonSeattleUSA

Personalised recommendations