Journal of Clinical Immunology

, Volume 30, Issue 2, pp 213–220 | Cite as

The Vagus Nerve and Nicotinic Receptors Involve Inhibition of HMGB1 Release and Early Pro-inflammatory Cytokines Function in Collagen-Induced Arthritis

  • Tong Li
  • Xiaoxia Zuo
  • Yaou Zhou
  • Yanping Wang
  • Hanping Zhuang
  • Lingli Zhang
  • Huali Zhang
  • Xianzhong Xiao
Article

Abstract

Objectives

The cholinergic anti-inflammatory pathway, a vagus nerve-dependent mechanism, inhibits cytokine releases in models of acute inflammatory disease. We investigated the efficacy and elucidated the possible mechanism of the cholinergic anti-inflammatory pathway on collagen-induced arthritis (CIA) in mice.

Methods

Fifty-six male DBA/1 mice were divided into four groups: control mice (sham vagotomy + phosphate-buffered saline; shamVGX+PBS), model mice (shamVGX+PBS+CIA), vagotomy mice (VGX+PBS+CIA), and nicotine (Nic) mice (shamVGX+Nic+CIA). We subjected mice to left-side cervical vagotomy 4 days before induction of arthritis. Mice in the nicotine group were injected with nicotine (250 μg/kg per day) 4 days before arthritis induction. Arthritis score was measured and histopathologic assessment of joint sections carried out. The concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in serum were evaluated by ELISA. Expression of high-mobility group box chromosomal protein 1(HMGB1) was evaluated by immunohistochemical staining of joints.

Results

Vagotomy exaggerated, whereas nicotine attenuated, clinical arthritis. Histopathologic findings confirmed that nicotine reduced infiltration of inflammatory cell and bone destruction. Expression of TNF-α and IL-6 decreased in nicotine-pretreated mice compared with model and vagotomy mice; IL-10 levels were not significantly different between the model group and nicotine group. Nicotine reduced the expression and translocation of HMGB1 in the inflamed joints of CIA mice.

Conclusions

The cholinergic anti-inflammatory pathway has an anti-inflammatory role in the pathophysiology of rheumatoid arthritis (RA) via inhibiting HMGB1 release and early pro-inflammatory cytokines function. Study of this pathway could be used for RA therapy.

Keywords

Rheumatoid arthritis cholinergic pathway inflammation 

Abbreviations

CIA

Collagen-induced arthritis

ShamVGX

Sham vagotomy

PBS

Phosphate-buffered saline

Nic

Nicotine

TNF

Tumor necrosis factor

IL

Interleukin

HMGB

High-mobility group box chromosomal protein

RA

Rheumatoid arthritis

TGF

Transforming growth factor

CNS

Central nervous system

MIP

Macrophage inflammatory protein

LPS

Lipopolysaccharide

ELISA

Enzyme-linked immunosorbent assay

EDTA

Ethylene diamine tetra-acetic acid

H&E

Hematoxylin and erosin

PGE

Prostaglandin E

MMPs

Metallproteinases

NO

Nitric oxide

TNFR

TNF receptor

Notes

Acknowledgements

This work was supported by grant from the National Natural Science Foundation of China [30671947].

References

  1. 1.
    Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Miossec P. An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol. 2004;16:218–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.PubMedGoogle Scholar
  5. 5.
    Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673–84.CrossRefPubMedGoogle Scholar
  7. 7.
    de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005;6:844–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.CrossRefPubMedGoogle Scholar
  10. 10.
    van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis. 2005;191:2138–48.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.CrossRefPubMedGoogle Scholar
  12. 12.
    van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60:114–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Campbell IK, Rich MJ, Bischof RJ, Dunn AR, Grail D, Hamilton JA. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J Immunol. 1998;161:3639–44.PubMedGoogle Scholar
  14. 14.
    Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immun. 2005;19:493–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Gallowitsch-Puerta M, Tracey KJ. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci. 2005;1062:209–19.CrossRefPubMedGoogle Scholar
  16. 16.
    Song XM, Li JG, Wang YL, Hu ZF, Zhou Q, Du ZH, et al. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock. 2008;30:468–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Goldstein RS, Bruchfeld A, Yang L, Qureshi AR, Gallowitsch-Puerta M, Patel NB, et al. Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol Med. 2007;13:210–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Mussener A, Litton MJ, Lindroos E, Klareskog L. Cytokine production in synovial tissue of mice with collagen-induced arthritis (CIA). Clin Exp Immunol. 1997;107:485–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Marinova-Mutafchieva L, Williams RO, Mason LJ, Mauri C, Feldmann M, Maini RN. Dynamics of proinflammatory cytokine expression in the joints of mice with collagen-induced arthritis (CIA). Clin Exp Immunol. 1997;107:507–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Lubberts E, Joosten LA, Van Den Bersselaar L, Helsen MM, Bakker AC, Xing Z, et al. Intra-articular IL-10 gene transfer regulates the expression of collagen-induced arthritis (CIA) in the knee and ipsilateral paw. Clin Exp Immunol. 2000;120:375–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T, et al. The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford). 2002;41:329–37.CrossRefGoogle Scholar
  22. 22.
    Kerlund K, Erlandsson Harris H, Tracey KJ, Wang H, Fehniger T, Klareskog L, et al. Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats. Clin Exp Immunol. 1999;115:32–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Ohshima S, Mima T, Sasai M, Nishioka K, Shimizu M, Murata N, et al. Tumour necrosis factor alpha (TNF-alpha) interferes with Fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells: a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF-alpha therapy for RA. Cytokine. 2000;12:281–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Bennett AN, Peterson P, Zain A, Grumley J, Panayi G, Kirkham B. Adalimumab in clinical practice. Outcome in 70 rheumatoid arthritis patients, including comparison of patients with and without previous anti-TNF exposure. Rheumatology (Oxford). 2005;44:1026–31.CrossRefGoogle Scholar
  25. 25.
    Torrance GW, Tugwell P, Amorosi S, Chartash E, Sengupta N. Improvement in health utility among patients with rheumatoid arthritis treated with adalimumab (a human anti-TNF monoclonal antibody) plus methotrexate. Rheumatology (Oxford). 2004;43:712–8.CrossRefGoogle Scholar
  26. 26.
    Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis. 2008;67:1516–23.CrossRefPubMedGoogle Scholar
  27. 27.
    Scheid C, Young R, McDermott R, Fitzsimmons L, Scarffe JH, Stern PL. Immune function of patients receiving recombinant human interleukin-6 (IL-6) in a phase I clinical study: induction of C-reactive protein and IgE and inhibition of natural killer and lymphokine-activated killer cell activity. Cancer Immunol Immunother. 1994;38:119–26.PubMedGoogle Scholar
  28. 28.
    Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol. 1998;161:4652–60.PubMedGoogle Scholar
  29. 29.
    Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP. Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 2006;54:158–68.CrossRefPubMedGoogle Scholar
  30. 30.
    Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.CrossRefPubMedGoogle Scholar
  31. 31.
    Kokkola R, Sundberg E, Ulfgren AK, Palmblad K, Li J, Wang H, et al. High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum. 2002;46:2598–603.CrossRefPubMedGoogle Scholar
  32. 32.
    Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 2003;48:971–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Pullerits R, Jonsson IM, Verdrengh M, Bokarewa M, Andersson U, Erlandsson-Harris H, et al. High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis Rheum. 2003;48:1693–700.CrossRefPubMedGoogle Scholar
  34. 34.
    Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H, et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 2003;48:2052–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tong Li
    • 1
  • Xiaoxia Zuo
    • 1
  • Yaou Zhou
    • 1
  • Yanping Wang
    • 1
  • Hanping Zhuang
    • 2
  • Lingli Zhang
    • 3
  • Huali Zhang
    • 3
  • Xianzhong Xiao
    • 3
  1. 1.Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Geratology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Laboratory of Shock, Department of Pathophysiology, Xiangya School of MedicineCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations