Journal of Clinical Immunology

, Volume 30, Issue 1, pp 80–89 | Cite as

Foxp3+ Regulatory T Cells, Th17 Effector Cells, and Cytokine Environment in Inflammatory Bowel Disease

  • Nicola Eastaff-Leung
  • Nicholas Mabarrack
  • Angela Barbour
  • Adrian Cummins
  • Simon Barry



Inflammatory bowel disease (IBD) is thought to result from an aberrant immune response. Inflammation in IBD may be caused by the loss of homeostasis between CD4+ CD25high Foxp3+ regulatory cells (Treg) and proinflammatory Th17 cells. The aim of this study was to investigate Treg and Th17 cells in the peripheral blood and intestinal mucosa of IBD patients and to assess the mucosal cytokine environment.


Treg and Th17 cells were measured in peripheral blood of 63 IBD patients and 28 controls by flow cytometry. Forkhead box p3 (Foxp3), interleukin (IL)-17a, IL-1β, IL-6, IL-21, IL-23, and transforming growth factor (TGF)-β mRNA were analyzed using real-time reverse transcription polymerase chain reaction in intestinal biopsies of 24 IBD and 18 control subjects.


A decrease in Treg and increase in Th17 cells was observed in the peripheral blood of IBD patients. When measured in the same patient and expressed as a ratio, a significant decrease in Treg/Th17 ratio was observed in IBD. Elevated expression of Foxp3, IL-17a, IL-1β, and IL-6 was observed in the mucosa of IBD patients, while TGF-β was only elevated in ulcerative colitis.


IBD is associated with a reduced ratio of Treg to Th17 cells in peripheral blood and is characterized by a proinflammatory cytokine microenvironment, which supports the continued generation of Th17 cells.


Inflammatory bowel disease Crohn’s disease ulcerative colitis regulatory T cells Th17 effector cells 


  1. 1.
    Packey CD, Sartor RB. Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. J Intern Med. 2008;263:597–606.CrossRefPubMedGoogle Scholar
  2. 2.
    Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol. 1995;102:448–55.PubMedGoogle Scholar
  3. 3.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMedGoogle Scholar
  4. 4.
    Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007;19:345–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol. 2003;170:3939–43.PubMedGoogle Scholar
  8. 8.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.CrossRefPubMedGoogle Scholar
  9. 9.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27:18–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8:950–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8:942–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9:641–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupe P, Barillot E, et al. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 2008;9:650–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature. 2008;454:350–2.CrossRefPubMedGoogle Scholar
  17. 17.
    LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194:519–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43:402–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B. Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol. 2003;38:180–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Andoh A, Yagi Y, Shioya M, Nishida A, Tsujikawa T, Fujiyama Y. Mucosal cytokine network in inflammatory bowel disease. World J Gastroenterol. 2008;14:5154–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127:89–97.PubMedGoogle Scholar
  24. 24.
    Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 2008;58:875–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol. 2009;156:217–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Ricciardelli I, Lindley KJ, Londei M, Quaratino S. Anti tumour necrosis-alpha therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn's disease. Immunology. 2008;125:178–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology. 2005;116:134–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Braitch M, Harikrishnan S, Robins RA, Nichols C, Fahey AJ, Showe L, et al. Glucocorticoids increase CD4CD25 cell percentage and Foxp3 expression in patients with multiple sclerosis. Acta Neurol Scand. 2009;119:239–45.CrossRefPubMedGoogle Scholar
  29. 29.
    Kopf H, de la Rosa GM, Howard OM, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol. 2007;7:1819–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Makita S, Kanai T, Oshima S, Uraushihara K, Totsuka T, Sawada T, et al. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol. 2004;173:3119–30.PubMedGoogle Scholar
  31. 31.
    Sitohy B, Hammarstrom S, Danielsson A, Hammarstrom ML. Basal lymphoid aggregates in ulcerative colitis colon: a site for regulatory T cell action. Clin Exp Immunol. 2008;151:326–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu QT, Saruta M, Avanesyan A, Fleshner PR, Banham AH, Papadakis KA. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis. 2007;13:191–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128:1868–78.CrossRefPubMedGoogle Scholar
  34. 34.
    Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009;113:4240–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Brown KA, Back SJ, Ruchelli ED, Markowitz J, Mascarenhas M, Verma R, et al. Lamina propria and circulating interleukin-6 in newly diagnosed pediatric inflammatory bowel disease patients. Am J Gastroenterol. 2002;97:2603–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O, et al. Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut. 1995;36:45–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Reimund JM, Wittersheim C, Dumont S, Muller CD, Kenney JS, Baumann R, et al. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn's disease. Gut. 1996;39:684–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Woywodt A, Neustock P, Kruse A, Schwarting K, Ludwig D, Stange EF, et al. Cytokine expression in intestinal mucosal biopsies. In situ hybridisation of the mRNA for interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha in inflammatory bowel disease. Eur Cytokine Netw. 1994;5:387–95.PubMedGoogle Scholar
  40. 40.
    Hwang SY, Kim HY. Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cells. 2005;19:180–4.PubMedGoogle Scholar
  41. 41.
    Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5:101–4.PubMedGoogle Scholar
  42. 42.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8:500–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7:135.CrossRefPubMedGoogle Scholar
  44. 44.
    Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus. 2000;9:589–93.CrossRefPubMedGoogle Scholar
  45. 45.
    Dominitzki S, Fantini MC, Neufert C, Nikolaev A, Galle PR, Scheller J, et al. Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25 T cells. J Immunol. 2007;179:2041–5.PubMedGoogle Scholar
  46. 46.
    Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu Z, Yang L, Cui Y, Wang X, Guo C, Huang Z, et al. Il-21 enhances NK cell activation and cytolytic activity and induces Th17 cell differentiation in inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:1133–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116:1310–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Kobayashi T, Okamoto S, Hisamatsu T, Kamada N, Chinen H, Saito R, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut. 2008;57:1682–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis. 2005;11:16–23.CrossRefPubMedGoogle Scholar
  53. 53.
    Monteleone G, Monteleone I, Fina D, Vavassori P, Del Vecchio Blanco G, Caruso R, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology. 2005;128:687–94.CrossRefPubMedGoogle Scholar
  54. 54.
    Hahm KB, Im YH, Parks TW, Park SH, Markowitz S, Jung HY, et al. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut. 2001;49:190–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Del Zotto B, Mumolo G, Pronio AM, Montesani C, Tersigni R, Boirivant M. TGF-beta1 production in inflammatory bowel disease: differing production patterns in Crohn's disease and ulcerative colitis. Clin Exp Immunol. 2003;134:120–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453:236–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nicola Eastaff-Leung
    • 1
    • 2
  • Nicholas Mabarrack
    • 4
  • Angela Barbour
    • 2
  • Adrian Cummins
    • 1
    • 3
  • Simon Barry
    • 5
  1. 1.Department of Gastroenterology and HepatologyThe Queen Elizabeth HospitalAdelaideAustralia
  2. 2.Discipline of PathologyUniversity of AdelaideAdelaideAustralia
  3. 3.Discipline of MedicineUniversity of AdelaideAdelaideAustralia
  4. 4.Discipline of Microbiology and ImmunologyUniversity of AdelaideAdelaideAustralia
  5. 5.Discipline of PediatricsUniversity of AdelaideAdelaideAustralia

Personalised recommendations