Advertisement

Journal of Clinical Immunology

, Volume 30, Issue 1, pp 34–44 | Cite as

A New Model of Induced Experimental Systemic Lupus Erythematosus (SLE) in Pigs and Its Amelioration by Treatment with a Tolerogenic Peptide

  • Amir Sharabi
  • Molly Dayan
  • Heidy Zinger
  • Edna MozesEmail author
Article

Abstract

Introduction

Systemic lupus erythematosus (SLE) is characterized by a variety of autoantibodies and systemic clinical manifestations. A tolerogenic peptide, hCDR1, ameliorated lupus manifestations in mice models. The objectives of this study were to induce experimental SLE in pigs and to determine the ability of hCDR1 to immunomodulate the disease manifestations.

Results and Discussion

We report here the successful induction, by a monoclonal anti-DNA antibody, of an SLE-like disease in pigs, manifested by autoantibody production and glomerular immune complex deposits. Treatment of pigs with hCDR1 ameliorated the lupus-related manifestations. Furthermore, the treatment downregulated the gene expression of the pathogenic cytokines, interleukin (IL)-1β, tumor necrosis factor alpha, interferon gamma, and IL-10, and upregulated the expression of the immunosuppressive cytokine transforming growth factor beta, the antiapoptotic molecule Bcl-xL, and the suppressive master gene, Foxp3, hence restoring the expression of the latter to normal levels. Thus, hCDR1 is capable of ameliorating lupus in large animals and is a potential candidate for the treatment of SLE patients.

Keywords

Experimental SLE in pigs peptide therapy immunomodulation of gene expression glomerular immune complex deposits 

Notes

Acknowledgements

The immunization and treatment of the pigs were performed by a team from TEVA Pharmaceutical Industries LTD at the Institute of Animal Research, Kibbutz Lahav, Israel. The study was supported by TEVA.

References

  1. 1.
    Hahn BH. Overview of pathogenesis of systemic lupus erythematosus. In: Wallace DJ, Hahn BH, editors. Dubious’ lupus erythematosus. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 46–53.Google Scholar
  2. 2.
    Nagy G, Koncz A, Perl A. T- and B-cell abnormalities in systemic lupus erythematosus. Crit Rev Immunol. 2005;25:123–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Theofilopoulos A. Murine models of lupus. In: Lahita RG, editor. Systemic lupus erythematosus. New York: Churchill Livingston; 1992. p. 121–94.Google Scholar
  4. 4.
    Mendlovic S, Brocke S, Shoenfeld Y, Ben Basat M, Meshorer A, Bakimer R. Induction of a systemic lupus erythematosus like disease in mice by a common human anti-DNA idiotype. Proc Natl Acad Sci U S A. 1988;85:2260–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Waisman A, Mendlovic S, Ruiz JP, Zinger H, Meshorer A, Mozes E. The role of the 16/6 idiotype network in the induction and manifestations of systemic lupus erythematosus. Int Immunol. 1993;5:1293–300.CrossRefPubMedGoogle Scholar
  6. 6.
    Waisman A, Mozes E. Variable regions of autoantibodies isolated from mice with experimental systemic lupus erythematosus. Eur J Immunol. 1993;23:1566–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Waisman A, Ruiz PJ, Israeli E, Eilat E, Kˆnen-Waisman S, Zinger H, et al. Modulation of murine systemic lupus erythematosus with peptides based on complementarity determining regions of a pathogenic anti-DNA monoclonal antibody. Proc Natl Acad Sci U S A. 1997;94:4620–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Eilat E, Zinger H, Nyska A, Mozes E. Prevention of systemic lupus erythematosus-like disease in (NZBxNZW)F1 mice by treating with CDR1- and CDR3-based peptides of a pathogenic autoantibody. J Clin Immunol. 2000;20:268–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Eilat E, Dayan M, Zinger H, Mozes E. The mechanism by which a peptide based on complementarity-determining region-1 of a pathogenic anti-DNA auto-Ab ameliorates experimental systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2001;98:1148–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Zinger H, Eilat E, Meshorer A, Mozes E. Peptides based on the complementarity-determining regions of a pathogenic autoantibody mitigate lupus manifestations of (NZBxNZW)F1 mice via active suppression. Int Immunol. 2003;15:205–14.CrossRefPubMedGoogle Scholar
  11. 11.
    Waisman A, Shoenfeld Y, Blank M, Ruiz PJ, Mozes E. The pathogenic human monoclonal anti-DNA that induces experimental systemic lupus erythematosus in mice is encoded by a VH4 gene segment. Int Immunol. 1995;7:689–96.CrossRefPubMedGoogle Scholar
  12. 12.
    Luger D, Dayan M, Zinger H, Liu J-P, Mozes E. A peptide based on the complementarity determining region 1 of a human monoclonal autoantibody ameliorates spontaneous and induced lupus manifestations in correlation with cytokine immunomodulation. J Clin Immunol. 2004;24:579–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Parameswarran R, Ben David H, Sharabi A, Zinger H, Mozes E. B-cell activating factor (BAFF) plays a role in the mechanism of action of a tolerogenic peptide that ameliorates lupus. Clin Immunol. 2009;131:223–32.CrossRefGoogle Scholar
  14. 14.
    Rapoport MJ, Sharabi A, Aharoni D, Bloch O, Zinger H, Dayan M, et al. Amelioration of SLE-like manifestations in (NZBxNZW)F1 mice following treatment with a peptide based on the complementarity determining region 1 of an autoantibody is associated with a down-regulation of apoptosis and of the pro-apoptotic factor JNK kinase. Clin Immunol. 2005;117:262–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Sharabi A, Luger D, Ben-David H, Dayan M, Zinger H, Mozes E. The role of apoptosis in the ameliorating effects of a CDR1-based peptide on lupus manifestations in a mouse model. J Immunol. 2007;179:4979–87.PubMedGoogle Scholar
  16. 16.
    Sharabi A, Zinger H, Zborowsky M, Sthoeger ZM, Mozes E. A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4+CD25+ cells and TGF-β. Proc Natl Acad Sci U S A. 2006;103:8810–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Sharabi A, Mozes E. The suppression of murine lupus by a tolerogenic peptide involves Foxp3-expressing CD8 cells that are required for the optimal induction and function of Foxp3-expressing CD4 cells. J Immunol. 2008;181:3243–51.PubMedGoogle Scholar
  18. 18.
    Sthoeger ZM, Dayan M, Tcherniack A, Green L, Toledo S, Segal R, et al. Modulation of autoreactive responses of peripheral blood lymphocytes of patients with systemic lupus erythematosus by peptides based on human and murine anti-DNA autoantibodies. Clin Exp Immunol. 2003;131:385–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Mauermann N, Sthoeger Z, Zinger H, Mozes E. Amelioration of lupus manifestations by a peptide based on the complementarity determining region 1 of an autoantibody in severe combined immunodeficient (SCID) mice engrafted with peripheral blood lymphocytes of systemic lupus erythematosus (SLE) patients. Clin Exp Immunol. 2004;137:513–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Sthoeger ZM, Sharabi A, Dayan M, Zinger H, Asher I, Sela U, et al. The tolerogenic peptide, hCDR1, down-regulates pathogenic cytokines and apoptosis and up-regulates immunosuppressive molecules and regulatory T cells in peripheral blood mononuclear cells of lupus patients. Hum Immunol. 2009;70:139–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Kirk AD. Crossing the bridge: large animal models in translational transplantation research. Immunol Rev. 2003;196:176–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Saalmüller A, Werner T, Fachinger V. T-helper cells from naive to committed. Veterinary Immunol Immunopathol. 2002;87:137–45.CrossRefGoogle Scholar
  23. 23.
    Rodrìguez-Carreòo, Lûpez-Fuertes L, Revilla C, Ezquerra A, Alonso F, Domìnguez J. Phenotypic characterization of porcine IFN-producing lymphocytes by flow cytometry. J Immunol Methods. 2002;259:171–9.CrossRefGoogle Scholar
  24. 24.
    Riemekasten G, Hahn BH. Key autoantigens in SLE. Rheumatology. 2005;44:975–82.CrossRefPubMedGoogle Scholar
  25. 25.
    Mok CC, Lau CS. Pathogenesis of systemic lupus erythematosus. J Clin Pathol. 2003;56:481–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Kuo P, Bynoe MS, Wang C, Diamond B. Bcl-2 leads to expression of anti-DNA B cells but no nephritis: a model for a clinical subset. Eur J Immunol. 1999;29:3168–78.CrossRefPubMedGoogle Scholar
  27. 27.
    Dayan M, Zinger H, Kalush F, Mor G, Amir-Zaltzman Y, Kohen F, et al. The beneficial effects of treatment with tamoxifen and anti-oestradiol antibody on experimental systemic lupus erythematosus are associated with cytokine modulations. Immunology. 1997;90:101–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Segal R, Dayan M, Zinger H, Mozes E. Methotrexate treatment in murine experimental systemic lupus erythematosus (SLE); clinical benefits associated with cytokine manipulation. Clin Exp Immunol. 1995;101:66–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Seery JP, Cattell V, Watt FM. Cutting edge: amelioration of kidney disease in a transgenic mouse model of lupus nephritis by administration of the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(β-o-methyl)-flu-oromethylketone. J Immunol. 2001;167:2452–5.PubMedGoogle Scholar
  30. 30.
    Sharabi A, Haviv A, Zinger H, Dayan M, Mozes E. Amelioration of murine lupus by a peptide, based on the complementarity determining region-1 of an autoantibody as compared to dexamethasone: different effects on cytokines and apoptosis. Clin Immunol. 2006;119:146–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Horwitz DA, Jacob CO. The cytokine network in the pathogenesis of systemic lupus erythematosus and possible therapeutic implications. Springer Semin Immunopathol. 1994;16:181–200.CrossRefPubMedGoogle Scholar
  32. 32.
    Theofilopoulos AN, Lawson BR. Tumour necrosis factor and other cytokines in murine lupus. Ann Rheum Dis. 1999;58(Suppl 1):I49–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Segal R, Bermas BL, Dayan M, Kalush F, Shearer GM, Mozes E. Kinetics of cytokine production in experimental systemic lupus erythematosus: involvement of T helper cell 1/T helper cell 2-type cytokines in disease. J Immunol. 1997;158:3009–16.PubMedGoogle Scholar
  34. 34.
    Dean GS, Tyrrell-Price J, Crawley E, Isenberg DA. Cytokines and systemic lupus erythematosus. Ann Rheum Dis. 2000;59:243–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaplan MJ. Apoptosis in systemic lupus erythematosus. Clin Immunol. 2004;112:210–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Trébéden-Nègre H, Weill B, Fournier C, Batteux F. B cell apoptosis accelerates the onset of murine lupus. Eur J Immunol. 2003;33:1603–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Emlen W, Niebur J, Kadera R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol. 1994;152:3685–92.PubMedGoogle Scholar
  38. 38.
    Ben-David H, Sharabi A, Parameswaran R, Zinger H, Mozes E. A tolerogenic peptide down-regulates mature B cells in bone marrow of lupus-afflicted mice by inhibition of IL-7, leading to apoptosis. Immunology. 2009;doi: 10.1111/j.1365-2567.2009.03109.x.
  39. 39.
    Sharabi A, Lapter S, Mozes E. Bcl-xL is required for the development of functional regulatory CD4 cells in lupus-afflicted mice following treatment with a tolerogenic peptide. J Autoimmun. 2009;doi: 10.1016/j.jaut.2009.06.002.
  40. 40.
    Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA. Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol. 1998;160:2539–45.PubMedGoogle Scholar
  41. 41.
    Yaswen L, Kulkarni AB, Fredrickson T, Mittleman B, Schiffman R, Payne S, et al. Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse. Blood. 1996;87:1439–45.PubMedGoogle Scholar
  42. 42.
    Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Paust S, Cantor H. Regulatory T cells and autoimmune disease. Immunol Rev. 2005;204:195–207.CrossRefPubMedGoogle Scholar
  44. 44.
    Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther. 2008;10:227.CrossRefPubMedGoogle Scholar
  45. 45.
    Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest. 2007;37:987–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Sharabi A, Azulai H, Sthoeger ZM, Mozes E. Clinical amelioration of murine lupus by a peptide based on the complementarity determining region-1 of an autoantibody and by cyclophosphamide: similarities and differences in the mechanisms of action. Immunology. 2007;121:248–57.CrossRefPubMedGoogle Scholar
  47. 47.
    La Cava A, Ebling FM, Hahn BH. Ig-reactive CD4+CD25+ T cells from tolerized (New Zealand Black × New Zealand White) F1 mice suppress in vitro production of antibodies to DNA. J Immunol. 2004;173:3542–8.PubMedGoogle Scholar
  48. 48.
    Hahn BH, Anderson M, Le E, La Cava A. Anti-DNA Ig peptides promote Treg cell activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58:2488–97.CrossRefPubMedGoogle Scholar
  49. 49.
    Kang HK, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol. 2005;174:3247–55.PubMedGoogle Scholar
  50. 50.
    Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol. 2007;178:7849–58.PubMedGoogle Scholar
  51. 51.
    Sela U, Sharabi A, Dayan M, Hershkoviz R, Mozes E. The role of dendritic cells in the mechanism of action of a peptide that ameliorates lupus in murine models. Immunology. 2008;128:e395–405.CrossRefPubMedGoogle Scholar
  52. 52.
    Sthoeger ZM, Sharabi A, Molad Y, Asher I, Zinger H, Dayan M, et al. Treatment of lupus patients with a tolerogenic peptide, hCDR1 (Edratide): immunomodulation of gene expression. J Autoimmun. 2009;33:77–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amir Sharabi
    • 1
  • Molly Dayan
    • 1
  • Heidy Zinger
    • 1
  • Edna Mozes
    • 1
    Email author
  1. 1.Department of ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations