Journal of Clinical Immunology

, Volume 29, Issue 4, pp 508–516 | Cite as

Imbalances Between Interleukin-1 and Tumor Necrosis Factor Agonists and Antagonists in Stable COPD

  • Elizabeth Sapey
  • Ali Ahmad
  • Darren Bayley
  • Paul Newbold
  • Noel Snell
  • Paul Rugman
  • Robert A. Stockley
Article

Abstract

Introduction

Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNFα) are potentially important in Chronic Obstructive Pulmonary Disease (COPD), but little is known of the relationships between these cytokines and their antagonists in disease compared with healthy controls. It is unclear if concentrations relate to disease severity. The study aimed to investigate these relationships and to assess the potential activity of each cytokine in the context of their antagonists.

Methods

Plasma cytokines, soluble receptors, and cell counts were measured in patients with stable COPD and age-matched healthy controls (n = 15 for both) daily for 5 days; these mediators were also measured in corresponding sputum samples from the COPD patients.

Results

COPD patients had significantly reduced concentrations of the antagonists, IL-1sRII, and IL-1RA compared with controls. In COPD, IL-1β exceeded its antagonists and correlated significantly with BMI and FEV1, while plasma IL-1RA correlated positively with BMI but negatively with sputum IL-1β, neutrophil, and macrophage counts and smoking history. TNFα antagonists exceeded agonists in both groups and did not correlate with COPD severity.

Conclusions

Endogenous IL-1β antagonists appear reduced in COPD. Furthermore, IL-1β correlated with clinical aspects of disease severity, suggesting that IL-1β may play a critical role in COPD. Given the relevant concentrations and binding affinities, it is likely that TNFα has limited activity in stable COPD.

Keywords

Neutrophils cytokines cytokine receptors inflammation lung 

References

  1. 1.
    Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, Dales RE. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163:349–55.PubMedGoogle Scholar
  2. 2.
    Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J 2001;34:50s–9s. doi:10.1183/09031936.01.00229701.CrossRefGoogle Scholar
  3. 3.
    Sapey E, Bayley DL, Ahmad A, Newbold P, Snell N, Stockley RA. Inter-relationships between inflammatory markers in stable COPD patients with bronchitis: the intra and inter patient variability. Thorax 2008;63:493–9. doi:10.1136/thx.2007.086751.PubMedCrossRefGoogle Scholar
  4. 4.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL. Tumour necrosis factor alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004;170:492–8. doi:10.1164/rccm.200404-511OC.PubMedCrossRefGoogle Scholar
  5. 5.
    Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH. Severity of elastase-induced emphysema is decreased in TNFα and IL-1ß receptor deficient mice. Lab Invest 2002;82:79–85.PubMedGoogle Scholar
  6. 6.
    Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1beta causes pulmonary inflammation, emyphysema and airway remodelling in the adult murine lung. Am J Respir Cell Mol Biol 2005;32:311–8. doi:10.1165/rcmb.2004-0309OC.PubMedCrossRefGoogle Scholar
  7. 7.
    Oudijk EJ, Nijhuis EH, Zwank MD, van d Graaf EA, Mager HJ, Coffer JW, Lammers JWJ, Koenderman L. Systemic inflammation in COPD visualised by gene profiling in peripheral blood neutrophils. Thorax 2005;60:538–44. doi:10.1136/thx.2004.034009.PubMedCrossRefGoogle Scholar
  8. 8.
    Pitsiou G, Kyriazis G, Hatzizisi O, Argyropoulou P, Mavrofridis E. Tumour necrosis factor alpha serum levels, weight loss and tissue oxygenation in chronic obstructive pulmonary disease. Respir Med 2002;96:594–8. doi:10.1053/rmed.2002.1322.PubMedCrossRefGoogle Scholar
  9. 9.
    Eid AA, Ionescu AA, Nixon LS, Lewis-Jenkins V, Matthews SB, Griffiths TL, Shale DL. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;15(164):1414–8.Google Scholar
  10. 10.
    Sevenoaks MJ, Stockley RA. Chronic Obstructive pulmonary disease, inflammation and co-morbidity—a common inflammatory phenotype? Respir Res 2006;7:70. doi:10.1186/1465-9921-7-70.PubMedCrossRefGoogle Scholar
  11. 11.
    Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS, GOLD Scientific Committee. Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256–76.PubMedGoogle Scholar
  12. 12.
    Woolhouse IS, Hill SL, Stockley RA. Symptom resolution assessed using a patient directed diary card during treatment of acute exacerbations of chronic bronchitis. Thorax 2001;56:947–53. doi:10.1136/thorax.56.12.947.PubMedCrossRefGoogle Scholar
  13. 13.
    Mikami M, Llewellyn-Jones CG, Bayley D, Stockley RA. The chemotactic activity of sputum from patients with bronchiectasis. Am J Respir Crit Care Med 1998;157:723–8.PubMedGoogle Scholar
  14. 14.
    Woolhouse IS, Bayley DL, Stockley RA. Effect of sputum processing with dithiothreitol on the detection of inflammatory mediators in chronic bronchitis and bronchiectasis. Thorax 2002;57:667–71. doi:10.1136/thorax.57.8.667.PubMedCrossRefGoogle Scholar
  15. 15.
    Stockley RA, Bayley DL. Validation of assays for inflammatory mediators in sputum. Eur Respir J 2000;15:778–81. doi:10.1034/j.1399-3003.2000.15d24.x.PubMedCrossRefGoogle Scholar
  16. 16.
    Sankoh AJ, Hugue MF, Dubey SD. Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Stat Med 1997;16:2529–42. doi:10.1002/(SICI)1097-0258(19971130)16:22<2529::AID-SIM692>3.0.CO;2-J.PubMedCrossRefGoogle Scholar
  17. 17.
    Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 1987;106:196–204.PubMedGoogle Scholar
  18. 18.
    Gamble E, Qiu Y, Wang D, Zhu J, Vignola AM, Kroegel C, Morell F, Hansel TT, Pavord I, Rabe KF, Barnes NC, Jeffrey PK. Variability of bronchial inflammation in chronic obstructive pulmonary disease: implications for study design. Eur Respir J 2006;27:293–9. doi:10.1183/09031936.06.00027705.PubMedCrossRefGoogle Scholar
  19. 19.
    Borrill Z, Starkey C, Vestbo J, Singh D. Reproducibility of exhaled breath condensate pH in chronic obstructive pulmonary disease. Eur Respir J 2005;25:269–74. doi:10.1183/09031936.05.00085804.PubMedCrossRefGoogle Scholar
  20. 20.
    Cannon JG, Abad LW, Vannier E, Lynch EA. Menstrual and gender dependent variations in circulating IL-1 agonists, antagonists and binding proteins. J Leukoc Biol 1998;63:117–23.PubMedGoogle Scholar
  21. 21.
    Catania A. Interactions among POMC-derived peptides and cytokines in control of the acute phase response in the aged. Italian National Research Council. http://www.aging.cnr.it/uoe/uo1_048.htm, 2007.
  22. 22.
    Ludwiczek O, Vannier E, Borggraefe I, Kaser A, Siegmund B, Dinarello CA, Tilg H. Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol 2004;138:323–9. doi:10.1111/j.1365-2249.2004.02599.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Janson RW, King TE, Hance KR, Arend WP. Enhanced production of IL-1 receptor antagonist by alveolar macrophages from patients with interstitial lung disease. Am Rev Respir Dis 1993;148:495–503.PubMedGoogle Scholar
  24. 24.
    Osika E, Cavaillon JM, Chadelet K, Boule M, Fitting C, Tournier G, Clement A. Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. Eur Respir J 1999;14:339–46. doi:10.1034/j.1399-3003.1999.14b17.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Rolfe MW, Standifrod TJ, Kunkel SL, Burdick MD, Gilbert AR, Lynch JP 3rd, Streiter RM. Interleukin-1 receptor antagonist expression in sarcoidosis. Am Rev Dis 1993;148:1378–84.Google Scholar
  26. 26.
    Rupp J, Kothe H, Mueller A, Maass M, Dalhoff K. Imbalanced secretion of IL-1ß and IL-1RA in Chlamydia pneumoniae infected mononuclear cells from COPD patients. Eur Respir J 2003;22:274–9. doi:10.1183/09031936.03.00007303.PubMedCrossRefGoogle Scholar
  27. 27.
    Hirsch E, Irikura VM, Paul SM, Hirsch D. Functions of IL-1RA in gene knock out and over producing mice. Proc Natl Acad Sci U S A 1996;93:11008–13. doi:10.1073/pnas.93.20.11008.PubMedCrossRefGoogle Scholar
  28. 28.
    Vecil GG, Larsen PH, Corley SM, Herx LM, Besson A, Goodyer CG, Yong VW. IL-1 is a key regulator of MMP-9 expression in human neurons in culture and following mouse brain trauma in vivo. J Neurosci Res 2000;61:212–24. doi:10.1002/1097-4547(20000715)61:2<212::AID-JNR12>3.0.CO;2-9.PubMedCrossRefGoogle Scholar
  29. 29.
    Jain L, Rosenburg GA. Matrix metalloproteinases and free radicals in cerebral ischaemia. Free Radic Biol Med 2005;39(1):71–80. doi:10.1016/j.freeradbiomed.2005.03.033.CrossRefGoogle Scholar
  30. 30.
    Duffield J. The inflammatory macrophage: a story of Jekyll and Mr Hyde. Clin Sci 2003;104:27–38. doi:10.1042/CS20020240.PubMedCrossRefGoogle Scholar
  31. 31.
    DosReis GA, Borges VM, Zin WA. The central role of Fas-ligand signaling in inflammatory lung disease. J Cell Mol Med 2004;8(3):285–93. doi:10.1111/j.1582-4934.2004.tb00318.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Burger D, Chicheportiche R, Giri J, Dayer JM. The inhibitory effect of human interleukin-1 receptor antagonist is enhanced by type II interleukin-1 receptor and hindered by type 1 interleukin-1 receptor. J Clin Invest 1995;96:38–41. doi:10.1172/JCI118045.PubMedCrossRefGoogle Scholar
  33. 33.
    Lennard AC. Interleukin-1 receptor antagonist. Crit Rev Immunol 1995;15:77–105.PubMedGoogle Scholar
  34. 34.
    Kurrie R, Lauffer L, Roder J, Kanzey EJ, Enssle KH, Seiler FR. Regulation of IL-1 activity by soluble IL-1 receptors. Behring Inst Mitt 1995;96:45–57.Google Scholar
  35. 35.
    Granowitz EV, Clark BD, Mancilla J, Dinarello CA. Interleukin 1 receptor antagonist competitively inhibits the binding of interleukin-1 to the Interleukin 1 Receptor. J Biol Chem 1991;266:14147–50.PubMedGoogle Scholar
  36. 36.
    Giri JG, Newton RC, Horuk R. Identification of soluble interleukin 1 binding protein in cell free supernatant. J Biol Chem 1990;265:17416–9.PubMedGoogle Scholar
  37. 37.
    Dubost JJ, Perrier S, Afane M, Viallard JL, Roux-Lombard P, Baudet-Pommel M, Begue C, Kemeny JL, Sauvezie B. IL-1 receptor antagonist in saliva; characterization in normal saliva and reduced concentration in Sjogren’s Syndrome. Clin Exp Immunol 1996;106:237–42. doi:10.1046/j.1365-2249.1996.d01-824.x.PubMedCrossRefGoogle Scholar
  38. 38.
    Sabit R, Bolton CE, Edwards PH, Pettit RJ, Evans WD, McEniery CM, Wilkinson IB, Cockcroft JR, Shale DJ. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:1259–65. doi:10.1164/rccm.200701-067OC.PubMedCrossRefGoogle Scholar
  39. 39.
    Grell M, Wajant H, Zimmerman G, Scheurich P. The type 1 receptor is the high affinity receptor for soluble tumour necrosis factor. Proc Natl Acad Sci U S A 1998;95:570–5. doi:10.1073/pnas.95.2.570.PubMedCrossRefGoogle Scholar
  40. 40.
    Medvedev AE, Espevik T, Ranges G, Sundan A. Distinct roles of the two Tumour Necrosis Factor (TNF) receptors in modulating TNF and Lymphotoxin α effects. J Biol Chem 1996;271:9778–84. doi:10.1074/jbc.271.16.9778.PubMedCrossRefGoogle Scholar
  41. 41.
    Beutler B, Milsark IW, Cerami A. Calchectin/tumour necrosis factor: production, distribution and metabolic fate in vivo. J Immunol 1985;135:3972–7.PubMedGoogle Scholar
  42. 42.
    Girardin E, Roux-Lombard P, Grau GE, Suter P, Gallati H, Dayer JM. Imbalance between TNFa and soluble TNF receptor concentrations in severe meningococcaemia. The J5 Study Group. Immunology 1994;76:20–3.Google Scholar
  43. 43.
    Aderka D, Engelmann H, Wallach D. Soluble TNF receptors in health and disease. In: Fiers W, Buurman WA, editors. Tumor Necrosis Factor: Molecular and Cellular Biology and Clinical Relevance. Basel: Karger; 1993. p. 191–8.Google Scholar
  44. 44.
    Aderka D, Sorkine P, Abu-Abid S, Lev D, Setton A, Cope AP, Walloch D. Shedding kinetics of soluble tumor necrosis factor (TNF) receptors after systemic TNF leaking during isolated limb perfusion relevance to the pathophysiology of septic shock. J Clin Invest 1998;101:50–659. doi:10.1172/JCI694.CrossRefGoogle Scholar
  45. 45.
    Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, Mahler D, Saadeh C, Siler T, Snell P, Korenblat P, Smith W, Kaye M, Mandel M, Andrews C, Prabhu R, Donohue JF, Watt R, Lo KH, Schlenker-Herceg R, Barnathan ES, Murray J. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007;175:926–34. doi:10.1164/rccm.200607-995OC.PubMedCrossRefGoogle Scholar
  46. 46.
    Danis VA, Franic GM, Rathjen DA, Laurent RM, Brooks PM. Circulating cytokine levels in patients with Rheumatoid Arthritis: double blind trial with sulphasalazine. Ann Rheum Dis 1992;51:946–50. doi:10.1136/ard.51.8.946.PubMedCrossRefGoogle Scholar
  47. 47.
    Hacievliyagil SS, Gunen H, Mutlu LC, Karabuluet AB, Temel I. Association between cytokines in induced sputum and severity of chronic obstructive pulmonary disease. Respir Med 2006;100:846–54. doi:10.1016/j.rmed.2005.08.022.PubMedCrossRefGoogle Scholar
  48. 48.
    de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM. Elevated TNFα production by peripheral monocytes of weight losing COPD patients. Am J Respir Crit Care Med 1996;153:633–7.PubMedGoogle Scholar
  49. 49.
    Dal Negro RW, Micheletto C, Tognella S, Visconti M, Guerriero M, Sandri MF. A two stage logistic model based on the measurement of pro-inflammatory cytokines in bronchial secretions for assessing bacterial, viral and non-infectious origin of COPD exacerbations. COPD 2005;2:7–16. doi:10.1081/COPD-200050680.PubMedCrossRefGoogle Scholar
  50. 50.
    Gingo MR, Silveira LJ, Miller YE, Friedlander AL, Cosgrove GP, Chan ED, Maier LA, Bowler RP. Tumour necrosis factor polymorphisms are associated with COPD. Eur Respir J 2008;31:1005–12. doi:10.1183/09031936.00100307.PubMedCrossRefGoogle Scholar
  51. 51.
    Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA. The TNF alpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir Res 2008;9:52. doi:10.1186/1465-9921-9-52.PubMedCrossRefGoogle Scholar
  52. 52.
    Gompertz S, Hill AT, Bayley DL, Stockley RA. Effect of expectoration on inflammation in induced sputum in alpha-1-antitrypsin deficiency. Respir Med 2006;100:1094–9. doi:10.1016/j.rmed.2005.09.024.PubMedCrossRefGoogle Scholar
  53. 53.
    Celli BR, Cote CG, Marin JM, Cassanova C, Montes de Oca M, Mendez RP, Pinto Plata V, Cabral HJ. The body mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004;350:1005–12. doi:10.1056/NEJMoa021322.PubMedCrossRefGoogle Scholar
  54. 54.
    Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am J Respir Crit Care Med 1996;153:1530–5.PubMedGoogle Scholar
  55. 55.
    Prescott E, Lange P, Vestbo J. Chronic mucus hypersecretion in COPD and death from pulmonary infection. Eur Respir J 1995;8:1333–8. doi:10.1183/09031936.95.08081333.PubMedCrossRefGoogle Scholar
  56. 56.
    Gamble E, Grootendorst DC, Hattotuwa K, O’Shaughnessy T, Ram FS, Qiu Y, Zhu J, Vignola AM, Kroegal C, Morell F, Pavord ID, Rabe KF, Jeffery PK, Barnes NC. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers; a pooled analysis. Eur Respir J 2007;30:467–71. doi:10.1183/09031936.00013006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elizabeth Sapey
    • 1
  • Ali Ahmad
    • 1
  • Darren Bayley
    • 2
  • Paul Newbold
    • 3
  • Noel Snell
    • 3
  • Paul Rugman
    • 3
  • Robert A. Stockley
    • 2
  1. 1.Department of MedicineUniversity of BirminghamBirminghamUK
  2. 2.Department of Respiratory MedicineUniversity Hospital BirminghamBirminghamUK
  3. 3.Research and DevelopmentAstraZenecaLondonUK

Personalised recommendations